• Title/Summary/Keyword: Cellular and molecular mechanisms

Search Result 666, Processing Time 0.033 seconds

Role of Reactive Oxygen Species in Transforming Growth Factor-β1-inuduced Fibronectin Secretion and α-Smooth Muscle Actin Expression in Human Lung Fibroblasts (사람 폐 섬유아세포의 전환성장인자-β1에 의한 fibronectin 분비와 α-smooth muscle actin 표현에 있어서 활성산소족의 역할)

  • Ha, Hunjoo;Yu, Mi-Ra;Uh, Soo-taek;Park, Choon Sik;Lee, Hi Bahl
    • Tuberculosis and Respiratory Diseases
    • /
    • v.58 no.3
    • /
    • pp.267-276
    • /
    • 2005
  • Background : The transforming growth $factor-{\beta}1$ ($TGF-{\beta}1$) plays a key role in lung fibrosis. However, the molecular mechanisms involved in $TGF-{\beta}1$-induced lung fibrosis are unclear. $TGF-{\beta}1$ is the key inducer of myofibroblast transdifferentiation via de novo synthesis of ${\alpha}-smooth$ muscle actin (${\alpha}-SMA$). Since $TGF-{\beta}1$ signals through reactive oxygen species (ROS) and ROS have been shown to induce accumulation of extracellular matrix (ECM) in various tissues, this study examined if ROS play a role in $TGF-{\beta}1$-induced fibronectin secretion and ${\alpha}-SMA$ expression in human lung fibroblasts, MRC-5 cells. Methods : Growth arrested and synchronized MRC-5 cells were stimulated with $TGF-{\beta}1$ (0.2-10 ng/ml) in the presence or absence of N-acetylcysteine (NAC) or diphenyleneiodonium (DPI) for up to 96 hours. Dichlorofluorescein (DCF)-sensitive cellular ROS were measured by FACScan and secreted fibronectin and cellular ${\alpha}-SMA$ by Western blot analysis. Results : $TGF-{\beta}1$ increased the level of fibronectin secretion and ${\alpha}-SMA$ expression in MRC-5 cells in a dosedependent manner. Both NAC (20 and 30 mM) and DPI (1 and $5{\mu}M$) significantly inhibited $TGF-{\beta}1$-induced fibronectin and ${\alpha}-SMA$ upregulation. The $TGF-{\beta}1$-induced cellular ROS level was also significantly reduced by NAC and DPI. Conclusions : The results suggest that NADPH oxidase-dependent ROS play an important role in $TGF-{\beta}1$-induced fibronectin secretion and ${\alpha}-SMA$ expression in MRC-5 cells, which leads to myofibroblast transdifferentiation and progressive lung fibrosis.

Transcriptomic Analysis of Triticum aestivum under Salt Stress Reveals Change of Gene Expression (RNA sequencing을 이용한 염 스트레스 처리 밀(Triticum aestivum)의 유전자 발현 차이 확인 및 후보 유전자 선발)

  • Jeon, Donghyun;Lim, Yoonho;Kang, Yuna;Park, Chulsoo;Lee, Donghoon;Park, Junchan;Choi, Uchan;Kim, Kyeonghoon;Kim, Changsoo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.1
    • /
    • pp.41-52
    • /
    • 2022
  • As a cultivar of Korean wheat, 'Keumgang' wheat variety has a fast growth period and can be grown stably. Hexaploid wheat (Triticum aestivum) has moderately high salt tolerance compared to tetraploid wheat (Triticum turgidum L.). However, the molecular mechanisms related to salt tolerance of hexaploid wheat have not been elucidated yet. In this study, the candidate genes related to salt tolerance were identified by investigating the genes that are differently expressed in Keumgang variety and examining salt tolerant mutation '2020-s1340.'. A total of 85,771,537 reads were obtained after quality filtering using NextSeq 500 Illumina sequencing technology. A total of 23,634,438 reads were aligned with the NCBI Campala Lr22a pseudomolecule v5 reference genome (Triticum aestivum). A total of 282 differentially expressed genes (DEGs) were identified in the two Triticum aestivum materials. These DEGs have functions, including salt tolerance related traits such as 'wall-associated receptor kinase-like 8', 'cytochrome P450', '6-phosphofructokinase 2'. In addition, the identified DEGs were classified into three categories, including biological process, molecular function, cellular component using gene ontology analysis. These DEGs were enriched significantly for terms such as the 'copper ion transport', 'oxidation-reduction process', 'alternative oxidase activity'. These results, which were obtained using RNA-seq analysis, will improve our understanding of salt tolerance of wheat. Moreover, this study will be a useful resource for breeding wheat varieties with improved salt tolerance using molecular breeding technology.

Identification and functional prediction of long non-coding RNAs related to skeletal muscle development in Duroc pigs

  • Ma, Lixia;Qin, Ming;Zhang, Yulun;Xue, Hui;Li, Shiyin;Chen, Wei;Zeng, Yongqing
    • Animal Bioscience
    • /
    • v.35 no.10
    • /
    • pp.1512-1523
    • /
    • 2022
  • Objective: The growth of pigs involves multiple regulatory mechanisms, and modern molecular breeding techniques can be used to understand the skeletal muscle growth and development to promote the selection process of pigs. This study aims to explore candidate lncRNAs and mRNAs related to skeletal muscle growth and development among Duroc pigs with different average daily gain (ADG). Methods: A total of 8 pigs were selected and divided into two groups: H group (high-ADG) and L group (low-ADG). And followed by whole transcriptome sequencing to identify differentially expressed (DE) lncRNAs and mRNAs. Results: In RNA-seq, 703 DE mRNAs (263 up-regulated and 440 down-regulated) and 74 DE lncRNAs (45 up-regulated and 29 down-regulated) were identified. In addition, 1,418 Transcription factors (TFs) were found. Compared with mRNAs, lncRNAs had fewer exons, shorter transcript length and open reading frame length. DE mRNAs and DE lncRNAs can form 417 lncRNA-mRNA pairs (antisense, cis and trans). DE mRNAs and target genes of lncRNAs were enriched in cellular processes, biological regulation, and regulation of biological processes. In addition, quantitative trait locus (QTL) analysis was used to detect the functions of DE mRNAs and lncRNAs, the most of DE mRNAs and target genes of lncRNAs were enriched in QTLs related to growth traits and skeletal muscle development. In single-nucleotide polymorphism/insertion-deletion (SNP/INDEL) analysis, 1,081,182 SNP and 131,721 INDEL were found, and transition was more than transversion. Over 60% of percentage were skipped exon events among alternative splicing events. Conclusion: The results showed that different ADG among Duroc pigs with the same diet maybe due to the DE mRNAs and DE lncRNAs related to skeletal muscle growth and development.

Astragaloside IV Prevents Obesity-Associated Hypertension by Improving Pro-Inflammatory Reaction and Leptin Resistance

  • Jiang, Ping;Ma, Dufang;Wang, Xue;Wang, Yongcheng;Bi, Yuxin;Yang, Jinlong;Wang, Xuebing;Li, Xiao
    • Molecules and Cells
    • /
    • v.41 no.3
    • /
    • pp.244-255
    • /
    • 2018
  • Low-grade pro-inflammatory state and leptin resistance are important underlying mechanisms that contribute to obesity-associated hypertension. We tested the hypothesis that Astragaloside IV (As IV), known to counteract obesity and hypertension, could prevent obesity-associated hypertension by inhibiting pro-inflammatory reaction and leptin resistance. High-fat diet (HFD) induced obese rats were randomly assigned to three groups: the HFD control group (HF con group), As IV group, and the As IV + ${\alpha}$-bungaratoxin (${\alpha}-BGT$) group (As IV+${\alpha}-BGT$ group). As IV ($20mg{\cdot}Kg^{-1}{\cdot}d^{-1}$) was administrated to rats for 6 weeks via daily oral gavage. Body weight and blood pressure were continuously measured, and NE levels in the plasma and renal cortex was evaluated to reflect the sympathetic activity. The expressions of leptin receptor (LepRb) mRNA, phosphorylated signal transducer and activator of transcription-3 (p-STAT3), phosphorylated phosphatidylinositol 3-kinase (p-PI3K), suppressor of cytokine signaling 3 (SOCS3) mRNA, and protein-tyrosine phosphatase 1B (PTP1B) mRNA, pro-opiomelanocortin (POMC) mRNA and neuropeptide Y (NPY) mRNA were measured by Western blot or qRT-PCR to evaluate the hypothalamic leptin sensitivity. Additionally, we measured the protein or mRNA levels of ${\alpha}7nAChR$, inhibitor of nuclear factor ${\kappa}B$ kinase subunit ${\beta}/nuclear$ factor ${\kappa}B$ ($IKK{\beta}/NF-KB$) and pro-inflammatory cytokines ($IL-1{\beta}$ and $TNF-{\alpha}$) in hypothalamus and adipose tissue to reflect the anti-inflammatory effects of As IV through upregulating expression of ${\alpha}7nAChR$. We found that As IV prevented body weight gain and adipose accumulation, and also improved metabolic disorders in HFD rats. Furthermore, As IV decreased BP and HR, as well as NE levels in blood and renal tissue. In the hypothalamus, As IV alleviated leptin resistance as evidenced by the increased p-STAT3, LepRb mRNA and POMC mRNA, and decreased p-PI3K, SOCS3 mRNA, and PTP1B mRNA. The effects of As IV on leptin sensitivity were related in part to the up-regulated ${\alpha}7nAchR$ and suppressed $IKK{\beta}/NF-KB$ signaling and pro-inflammatory cytokines in the hypothalamus and adipose tissue, since co-administration of ${\alpha}7nAChR$ selective antagonist ${\alpha}-BGT$ could weaken the improved effect of As IV on central leptin resistance. Our study suggested that As IV could efficiently prevent obesityassociated hypertension through inhibiting inflammatory reaction and improving leptin resistance; furthermore, these effects of As IV was partly related to the increased ${\alpha}7nAchR$ expression.

Vimentin Is Involved in Peptidylarginine Deiminase 2-Induced Apoptosis of Activated Jurkat Cells

  • Hsu, Pei-Chen;Liao, Ya-Fan;Lin, Chin-Li;Lin, Wen-Hao;Liu, Guang-Yaw;Hung, Hui-Chih
    • Molecules and Cells
    • /
    • v.37 no.5
    • /
    • pp.426-434
    • /
    • 2014
  • Peptidylarginine deiminase type 2 (PADI2) deiminates (or citrullinates) arginine residues in protein to citrulline residues in a $Ca^{2+}$-dependent manner, and is found in lymphocytes and macrophages. Vimentin is an intermediate filament protein and a well-known substrate of PADI2. Citrullinated vimentin is found in ionomycin-induced macrophage apoptosis. Citrullinated vimentin is the target of anti-Sa antibodies, which are specific to rheumatoid arthritis, and play a critical role in the pathogenesis of the disease. To investigate the role of PADI2 in apoptosis, we generated a Jurkat cell line that overexpressed the PADI2 transgene from a tetracycline-inducible promoter, and used a combination of 12-O-tetradecanoylphorbol-13-acetate and ionomycin to activate Jurkat cells. We found that PADI2 overexpression reduced the cell viability of activated Jurkat cells in1a dose- and time-dependent manner. The PADI2-overexpressed and -activated Jurkat cells presented typical manifestations of apoptosis, and exhibited greater levels of citrullinated proteins, including citrullinated vimentin. Vimentin overexpression rescued a portion of the cells from apoptosis. In conclusion, PADI2 overexpression induces apoptosis in activated Jurkat cells. Vimentin is involved in PADI2-induced apoptosis. Moreover, PADI2-overexpressed Jurkat cells secreted greater levels of vimentin after activation, and expressed more vimentin on their cell surfaces when undergoing apoptosis. Through artificially highlighting PADI2 and vimentin, we demonstrated that PADI2 and vimentin participate in the apoptotic mechanisms of activated T lymphocytes. The secretion and surface expression of vimentin are possible ways of autoantigen presentation to the immune system.

Regulation of S100G Expression in the Uterine Endometrium during Early Pregnancy in Pigs

  • Choi, Yo-Han;Seo, Hee-Won;Shim, Jang-Soo;Kim, Min-Goo;Ka, Hak-Hyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.1
    • /
    • pp.44-51
    • /
    • 2012
  • Calcium ions play an important role in the establishment and maintenance of pregnancy, but molecular and cellular regulatory mechanisms of calcium ion action in the uterine endometrium are not fully understood in pigs. Previously, we have shown that calcium regulatory molecules, transient receptor potential vanilloid type 5 (TRPV6) and calbindin-D9k (S100G), are expressed in the uterine endometrium during the estrous cycle and pregnancy in a pregnancy status- and stage-specific manner, and that estrogen of conceptus origin increases endometrial TRPV6 expression. However, regulation of S100G expression in the uterine endometrium and conceptus expression of S100G has been not determined during early pregnancy. Thus, we investigated regulation of S100G expression by estrogen and interleukin-$1{\beta}$ (IL1B) in the uterine endometrium and conceptus expression of S100G during early pregnancy in pigs. We obtained uterine endometrial tissues from day (D) 12 of the estrous cycle and treated with combinations of steroid hormones, estradiol-$17{\beta}$ ($E_2$) and progesterone ($P_4$), and increasing doses of IL1B. Real-time RT-PCR analysis showed that $E_2$ and IL1B increased S100G mRNA levels in the uterine endometrium, and conceptuses expressed S100G mRNA during early pregnancy, as determined by RT-PCR analysis. To determine if endometrial expression of S100G mRNA during the implantation period was affected by the somatic cell nuclear transfer (SCNT) procedure, we compared S100G mRNA levels in the uterine endometrium from gilts with SCNT-derived conceptuses with those from gilts with conceptuses derived from natural mating on D12 of pregnancy. Real-time RT-PCR analysis showed that levels of S100G mRNA in the uterine endometrium from gilts carrying SCNT-derived conceptuses was significantly lower than those from gilts carrying conceptuses derived from natural mating. These results showed that S100G expression in the uterine endometrium was regulated by estrogen and IL1B of conceptus origin, and affected by the SCNT procedure during early pregnancy. These suggest that conceptus signals regulate S100G, an intracellular calcium transport protein, for the establishment of pregnancy in pigs.

Radix et Rhizoma Ginseng chemoprevents both initiation and promotion of cutaneous carcinoma by enhancing cell-mediated immunity and maintaining redox homeostasis

  • Yu, Suyun;Wang, Siliang;Huang, Shuai;Wang, Wei;Wei, Zhonghong;Ding, Yushi;Wang, Aiyun;Huang, Shile;Chen, Wenxing;Lu, Yin
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.580-592
    • /
    • 2020
  • Background: Radix et Rhizoma Ginseng (thereafter called ginseng) has been used as a medicinal herb for thousands of years to maintain people's physical vitality and is also a non-organ-specific cancer preventive and therapeutic traditional medicine in several epidemiologic and preclinical studies. Owing to few toxic side effects and strong enhancement on body immunity, ginseng has admirable application potential and value in cancer chemoprevention. The study aims at investigating the chemopreventive effects of ginseng on cutaneous carcinoma and the underlying mechanisms. Methods: The mouse skin cancer model was induced by 7,12-dimethylbenz[a]anthracene/12-O-tetradecanoylphorbol-13-acetate. Ultraperformance liquid chromatography/mass spectrometry was used for identifying various ginsenosides, the main active ingredients of ginseng. Comprehensive approaches (including network pharmacology, bioinformatics, and experimental verification) were used to explore the potential targets of ginseng. Results: Ginseng treatment inhibited cutaneous carcinoma in terms of initiation and promotion. The content of Rb1, Rb2, Rc, and Rd ginsenosides was the highest in both mouse blood and skin tissues. Ginseng and its active components well maintained the redox homeostasis and modulated the immune response in the model. Specifically, ginseng treatment inhibited the initiation of skin cancer by enhancing T-cell-mediated immune response through upregulating HSP27 expression and inhibited the promotion of skin cancer by maintaining cellular redox homeostasis through promoting nuclear translocation of Nrf2. Conclusion: According to the study results, ginseng can be potentially used for cutaneous carcinoma as a chemopreventive agent by enhancing cell-mediated immunity and maintaining redox homeostasis with multiple components, targets, and links.

Genetic Toxicity Test of 8-Hydroxyquinoline by Ames, Micronucleus, Comet Assays and Microarray Analysis

  • Lee, Woo-Sun;Kim, Hyun-Joo;Lee, Eun-Mi;Kim, Joo-Hwan;Suh, Soo-Kyung;Kwon, Kyung-Jin;Sheen, Yhun-Yong;Kim, Seung-Hee;Park, Sue-N.
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.2
    • /
    • pp.90-97
    • /
    • 2007
  • 8-Hydroxyquinoline is used as antibacterial agent and antioxidant based on its function inducing the chelation of ferrous ion present in host resulting in production of chelated complex. This complex being transported to cell membrane of bacteria and fungi exerts antibacterial and antifungal action. In this study, we have carried out in vitro genetic toxicity tests and microarray analysis to understand the underlying mechanisms and the mode of action of toxicity of 8-hydroxyquinoline. TA1535 and TA98 cells were treated with 8-hydroxyquinoline to test its toxicity by basic genetic toxicity test, Ames and two new in vitro micronucleus and COMET assays were applied using CHO cells and L5178Y cells, respectively. In addition, microarray analysis of differentially expressed genes in L5178Y cells in response to 8-hydroxyquinoline were analyzed using Affymatrix genechip. The result of Ames test was that 8-hydroxyquinoline treatment increased the mutations in base substitution strain TA1535 and likewise, 8-hydroxyquinoline also increased mutations in frame shift TA98. 8-Hydroxyquinoline increased micronuclei in CHO cells and DNA damage in L5178Y. 8-Hdroxyquinoline resulted in positive response in all three tests showing its ability to induce not only mutation but also DNA damage. 783 Genes were initially selected as differentially expressed genes in response to 8-hydroxyquinoline by microarray analysis and 34 genes among them were over 4 times of log fold changed. These 34 genes could be candidate biomarkers of genetic toxic action of 8-hydroxyquinoline related to induction of mutation and/or induction of micronuclei and DNA damage. Further confirmation of these candidate markers related to their biological function will be useful to understand the detailed mode of action of 8-hydroxyquinoline.

Ubiquitin D Promotes Progression of Oral Squamous Cell Carcinoma via NF-Kappa B Signaling

  • Song, An;Wang, Yi;Jiang, Feng;Yan, Enshi;Zhou, Junbo;Ye, Jinhai;Zhang, Hongchuang;Ding, Xu;Li, Gang;Wu, Yunong;Zheng, Yang;Song, Xiaomeng
    • Molecules and Cells
    • /
    • v.44 no.7
    • /
    • pp.468-480
    • /
    • 2021
  • Ubiquitin D (UBD) is highly upregulated in many cancers, and plays a pivotal role in the pathophysiological processes of cancers. However, its roles and underlying mechanisms in oral squamous cell carcinoma (OSCC) are still unclear. In the present study, we investigated the role of UBD in patients with OSCC. Quantitative real-time polymerase chain reaction and Western blot were used to measure the expression of UBD in OSCC tissues. Immunohistochemistry assay was used to detect the differential expressions of UBD in 244 OSCC patients and 32 cases of normal oral mucosae. In addition, CCK-8, colony formation, wound healing and Transwell assays were performed to evaluate the effect of UBD on the cell proliferation, migration, and invasion in OSCC. Furthermore, a xenograft tumor model was established to verify the role of UBD on tumor formation in vivo. We found that UBD was upregulated in human OSCC tissues and cell lines and was associated with clinical and pathological features of patients. Moreover, the overexpression of UBD promoted the proliferation, migration and invasion of OSCC cells; however, the knockdown of UBD exerted the opposite effects. In this study, our results also suggested that UBD promoted OSCC progression through NF-κB signaling. Our findings indicated that UBD played a critical role in OSCC and may serve as a prognostic biomarker and potential therapeutic target for OSCC treatment.

Extracellular RNAs and Extracellular Vesicles: Inception, Current Explorations, and Future Applications

  • Perumal, Ayyappasamy Sudalaiyadum;Chelliah, Ramachandran;Datta, Saptashwa;Krishna, Jayachandran;Samuel, Melvin S.;Ethiraj, Selvarajan;Park, Chae Rin
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.6
    • /
    • pp.535-543
    • /
    • 2020
  • In addition to the ubiquitous roles of cellular RNA in genetic regulations, gene expression and phenotypic variations in response to environmental cues and chemotactic signals, the regulatory roles of a new type of RNA called extracellular RNAs (exRNAs) are an up-and-coming area of research interest. exRNA is transported outside the cell through membrane blebs known as membrane vesicles or extracellular vesicles (EVs). EV formation is predominant and conserved among all microbial forms, including prokaryotes, eukaryotes, and archaea. This review will focus on the three major topics concerning bacterially derived exRNAs, i.e., 1) the discovery of exRNA and influence of extraneous RNA over bacterial gene regulations, 2) the known secretion mechanism for the release of exRNA, and 3) the possible applications that can be devised with these exRNA secreted by different gram-negative and gram-positive bacteria. Further, this review will also provide an opinion on exRNA- and EV-derived applications such as the species-specific exRNA markers for diagnostics and the possible roles of exRNA in probiotics and the epigenetic regulations of the gut microbiome.