DOI QR코드

DOI QR Code

Vimentin Is Involved in Peptidylarginine Deiminase 2-Induced Apoptosis of Activated Jurkat Cells

  • Hsu, Pei-Chen (Department of Life Sciences and Institute of Genomics and Bioinformatics, National Chung-Hsing University, and Agricultural Biotechnology Center (ABC), National Chung Hsing University) ;
  • Liao, Ya-Fan (Department of Applied Chemistry, Chaoyang University of Technology) ;
  • Lin, Chin-Li (Institute of Medicine, Chung Shan Medical University) ;
  • Lin, Wen-Hao (Department of Life Sciences and Institute of Genomics and Bioinformatics, National Chung-Hsing University, and Agricultural Biotechnology Center (ABC), National Chung Hsing University) ;
  • Liu, Guang-Yaw (Institute of Microbiology and Immunology, Chung Shan Medical University, and Division of Allergy, Immunology, and Rheumatology, Chung Shan Medical University Hospital) ;
  • Hung, Hui-Chih (Department of Life Sciences and Institute of Genomics and Bioinformatics, National Chung-Hsing University, and Agricultural Biotechnology Center (ABC), National Chung Hsing University)
  • Received : 2013.11.30
  • Accepted : 2014.04.21
  • Published : 2014.05.31

Abstract

Peptidylarginine deiminase type 2 (PADI2) deiminates (or citrullinates) arginine residues in protein to citrulline residues in a $Ca^{2+}$-dependent manner, and is found in lymphocytes and macrophages. Vimentin is an intermediate filament protein and a well-known substrate of PADI2. Citrullinated vimentin is found in ionomycin-induced macrophage apoptosis. Citrullinated vimentin is the target of anti-Sa antibodies, which are specific to rheumatoid arthritis, and play a critical role in the pathogenesis of the disease. To investigate the role of PADI2 in apoptosis, we generated a Jurkat cell line that overexpressed the PADI2 transgene from a tetracycline-inducible promoter, and used a combination of 12-O-tetradecanoylphorbol-13-acetate and ionomycin to activate Jurkat cells. We found that PADI2 overexpression reduced the cell viability of activated Jurkat cells in1a dose- and time-dependent manner. The PADI2-overexpressed and -activated Jurkat cells presented typical manifestations of apoptosis, and exhibited greater levels of citrullinated proteins, including citrullinated vimentin. Vimentin overexpression rescued a portion of the cells from apoptosis. In conclusion, PADI2 overexpression induces apoptosis in activated Jurkat cells. Vimentin is involved in PADI2-induced apoptosis. Moreover, PADI2-overexpressed Jurkat cells secreted greater levels of vimentin after activation, and expressed more vimentin on their cell surfaces when undergoing apoptosis. Through artificially highlighting PADI2 and vimentin, we demonstrated that PADI2 and vimentin participate in the apoptotic mechanisms of activated T lymphocytes. The secretion and surface expression of vimentin are possible ways of autoantigen presentation to the immune system.

Keywords

References

  1. Altman, A., Coggeshall, K.M., and Mustelin, T. (1990). Molecular events mediating T cell activation. Adv. Immunol. 48, 227-360. https://doi.org/10.1016/S0065-2776(08)60756-7
  2. Altman, A., Mally, M.I., and Isakov, N. (1992). Phorbol ester synergizes with $Ca^{2+}$ ionophore in activation of protein kinase C (PKC) alpha and PKC beta isoenzymes in human T cells and in induction of related cellular functions. Immunology 76, 465-471.
  3. Asaga, H., Yamada, M., and Senshu, T. (1998). Selective deimination of vimentin in calcium ionophore-induced apoptosis of mouse peritoneal macrophages. Biochem. Biophys. Res. Commun. 243, 641-646. https://doi.org/10.1006/bbrc.1998.8148
  4. Asaga, H., Nakashima, K., Senshu, T., Ishigami, A., and Yamada, M. (2001). Immunocytochemical localization of peptidylarginine deiminase in human eosinophils and neutrophils. J. Leukoc. Biol. 70, 46-51.
  5. Baeten, D., Peene, I., Union, A., Meheus, L., Sebbag, M., Serre, G., Veys, E.M., and De Keyser, F. (2001). Specific presence of intracellular citrullinated proteins in rheumatoid arthritis synovium: relevance to antifilaggrin autoantibodies. Arthritis Rheum. 44, 2255-2262. https://doi.org/10.1002/1529-0131(200110)44:10<2255::AID-ART388>3.0.CO;2-#
  6. Bargagna-Mohan, P., Hamza, A., Kim, Y.E., Khuan Abby Ho, Y., Mor-Vaknin, N., Wendschlag, N., Liu, J., Evans, R.M., Markovitz, D.M., Zhan, C.G., et al. (2007). The tumor inhibitor and antiangiogenic agent withaferin A targets the intermediate filament protein vimentin. Chem. Biol. 14, 623-634. https://doi.org/10.1016/j.chembiol.2007.04.010
  7. Boilard, E., Bourgoin, S.G., Bernatchez, C., and Surette, M.E. (2003) Identification of an autoantigen on the surface of apoptotic human T cells as a new protein interacting with inflammatory group IIA phospholipase A2. Blood 102, 2901-2909. https://doi.org/10.1182/blood-2002-12-3702
  8. Byun, Y., Chen, F., Chang, R., Trivedi, M., Green, K.J., and Cryns, V.L. (2001). Caspase cleavage of vimentin disrupts intermediate filaments and promotes apoptosis. Cell Death Differ. 8, 443-450. https://doi.org/10.1038/sj.cdd.4400840
  9. Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U., and Nishizuka, Y. (1982). Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J. Biol. Chem. 257, 7847-7851.
  10. De Rycke, L., Nicholas, A.P., Cantaert, T., Kruithof, E., Echols, J.D., Vandekerckhove, B., Veys, E.M., De Keyser, F., and Baeten, D. (2005). Synovial intracellular citrullinated proteins colocalizing with peptidyl arginine deiminase as pathophysiologically relevant antigenic determinants of rheumatoid arthritis-specific humoral autoimmunity. Arthritis Rheum. 52, 2323-2330. https://doi.org/10.1002/art.21220
  11. Dong, S., Kojima, T., Shiraiwa, M., Mechin, M.C., Chavanas, S., Serre, G., Simon, M., Kawada, A., and Takahara, H. (2005). Regulation of the expression of peptidylarginine deiminase type II gene (PADI2) in human keratinocytes involves Sp1 and Sp3 transcription factors. J. Invest. Dermatol. 124, 1026-1033. https://doi.org/10.1111/j.0022-202X.2005.23690.x
  12. Foulquier, C., Sebbag, M., Clavel, C., Chapuy-Regaud, S., Al Badine, R., Mechin, M.C., Vincent, C., Nachat, R., Yamada, M., Takahara, H., et al. (2007). Peptidyl arginine deiminase type 2 (PAD-2) and PAD-4 but not PAD-1, PAD-3, and PAD-6 are expressed in rheumatoid arthritis synovium in close association with tissue inflammation. Arthritis Rheum. 56, 3541-3553. https://doi.org/10.1002/art.22983
  13. Goeb, V., Thomas-L'Otellier, M., Daveau, R., Charlionet, R., Fardellone, P., Le Loet, X., Tron, F., Gilbert, D., and Vittecoq, O. (2009). Candidate autoantigens identified by mass spectrometry in early rheumatoid arthritis are chaperones and citrullinated glycolytic enzymes. Arthritis Res. Ther. 11, R38. https://doi.org/10.1186/ar2644
  14. Gossen, M., Freundlieb, S., Bender, G., Muller, G., Hillen, W., and Bujard, H. (1995). Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766-1769. https://doi.org/10.1126/science.7792603
  15. Hagiwara, T., Nakashima, K., Hirano, H., Senshu, T., and Yamada, M. (2002). Deimination of arginine residues in nucleophosmin/B23 and histones in HL-60 granulocytes. Biochem. Biophys. Res. Commun. 290, 979-983. https://doi.org/10.1006/bbrc.2001.6303
  16. Hashimoto, M., Inoue, S., Ogawa, S., Conrad, C., Muramatsu, M., Shackelford, D., and Masliah, E. (1998). Rapid fragmentation of vimentin in human skin fibroblasts exposed to tamoxifen: a possible involvement of caspase-3. Biochem. Biophys. Res. Commun. 247, 401-406. https://doi.org/10.1006/bbrc.1998.8799
  17. Hay, E.D. (1989). Extracellular matrix, cell skeletons, and embryonic development. Am. J. Med. Genet. 34, 14-29. https://doi.org/10.1002/ajmg.1320340107
  18. Hendrix, M.J., Seftor, E.A., Chu, Y.W., Trevor, K.T., and Seftor, R.E. (1996). Role of intermediate filaments in migration, invasion and metastasis. Cancer Metastasis Rev. 15, 507-525. https://doi.org/10.1007/BF00054016
  19. Hojo-Nakashima, I., Sato, R., Nakashima, K., Hagiwara, T., and Yamada, M. (2009). Dynamic expression of peptidylarginine deiminase 2 in human monocytic leukaemia THP-1 cells during macrophage differentiation. J. Biochem. 146, 471-479. https://doi.org/10.1093/jb/mvp097
  20. Imboden, J.B., and Stobo, J.D. (1985). Transmembrane signalling by the T cell antigen receptor. Perturbation of the T3-antigen receptor complex generates inositol phosphates and releases calcium ions from intracellular stores. J. Exp. Med. 161, 446-456. https://doi.org/10.1084/jem.161.3.446
  21. Inagaki, M., Takahara, H., Nishi, Y., Sugawara, K., and Sato, C. (1989). $Ca^{2+}$-dependent deimination-induced disassembly of intermediate filaments involves specific modification of the aminoterminal head domain. J. Biol. Chem. 264, 18119-18127.
  22. Isakov, N., Mally, M.I., Scholz, W., and Altman, A. (1987). Tlymphocyte activation: the role of protein kinase C and the bifurcating inositol phospholipid signal transduction pathway. Immunol. Rev. 95, 89-111. https://doi.org/10.1111/j.1600-065X.1987.tb00501.x
  23. Ishigami, A., Ohsawa, T., Hiratsuka, M., Taguchi, H., Kobayashi, S., Saito, Y., Murayama, S., Asaga, H., Toda, T., Kimura, N., et al. (2005). Abnormal accumulation of citrullinated proteins catalyzed by peptidylarginine deiminase in hippocampal extracts from patients with Alzheimer's disease. J. Neurosci. Res. 80, 120-128. https://doi.org/10.1002/jnr.20431
  24. Ivaska, J., Pallari, H.M., Nevo, J., and Eriksson, J.E. (2007). Novel functions of vimentin in cell adhesion, migration, and signaling. Exp. Cell Res. 313, 2050-2062. https://doi.org/10.1016/j.yexcr.2007.03.040
  25. Jang, B., Jeon, Y.C., Choi, J.K., Park, M., Kim, J.I., Ishigami, A., Maruyama, N., Carp, R.I., Kim, Y.S., and Choi, E.K. (2012). Peptidylarginine deiminase modulates the physiological roles of enolase via citrullination: links between altered multifunction of enolase and neurodegenerative diseases. Biochem. J. 445, 183-192. https://doi.org/10.1042/BJ20120025
  26. Kamata, Y., Taniguchi, A., Yamamoto, M., Nomura, J., Ishihara, K., Takahara, H., Hibino, T., and Takeda, A. (2009). Neutral cysteine protease bleomycin hydrolase is essential for the breakdown of deiminated filaggrin into amino acids. J. Biol. Chem. 284, 12829-12836 https://doi.org/10.1074/jbc.M807908200
  27. Kim, E., Muga, S.J., and Fischer, S.M. (2004). Identification and characterization of a phorbol ester-responsive element in the murine 8S-lipoxygenase gene. J. Biol. Chem. 279, 11188-11197. https://doi.org/10.1074/jbc.M313291200
  28. Kinloch, A., Lundberg, K., Wait, R., Wegner, N., Lim, N.H., Zendman, A.J., Saxne, T., Malmstrom, V., and Venables, P.J. (2008). Synovial fluid is a site of citrullination of autoantigens in inflammatory arthritis. Arthritis Rheum. 58, 2287-2295. https://doi.org/10.1002/art.23618
  29. Lahat, G., Zhu, Q.S., Huang, K.L., Wang, S., Bolshakov, S., Liu, J., Torres, K., Langley, R.R., Lazar, A.J., Hung, M.C., et al. (2010). Vimentin is a novel anti-cancer therapeutic target; insights from in vitro and in vivo mice xenograft studies. PLoS One 5, e10105. https://doi.org/10.1371/journal.pone.0010105
  30. Lee, H.J., Joo, M., Abdolrasulnia, R., Young, D.G., Choi, I., Ware, L.B., Blackwell, T.S., and Christman, B.W. (2010). Peptidylarginine deiminase 2 suppresses inhibitory {kappa}B kinase activity in lipopolysaccharide-stimulated RAW 264.7 macrophages. J. Biol. Chem. 285, 39655-39662. https://doi.org/10.1074/jbc.M110.170290
  31. Liu, C., and Hermann, T.E. (1978). Characterization of ionomycin as a calcium ionophore. J. Biol. Chem. 253, 5892-5894.
  32. Liu, G.Y., Liao, Y.F., Chang, W.H., Liu, C.C., Hsieh, M.C., Hsu, P.C., Tsay, G.J., and Hung, H.C. (2006). Overexpression of peptidylarginine deiminase IV features in apoptosis of haematopoietic cells. Apoptosis 11, 183-196. https://doi.org/10.1007/s10495-006-3715-4
  33. Liu, Y.L., Tsai, I.C., Chang, C.W., Liao, Y.F., Liu, G.Y., and Hung, H.C. (2013). Functional roles of the non-catalytic calciumbinding sites in the N-terminal domain of human peptidylarginine deiminase 4. PLoS One 8, e51660. https://doi.org/10.1371/journal.pone.0051660
  34. Lundkvist, A., Reichenbach, A., Betsholtz, C., Carmeliet, P., Wolburg, H., and Pekny, M. (2004). Under stress, the absence of intermediate filaments from Muller cells in the retina has structural and functional consequences. J. Cell Sci. 117, 3481-3488. https://doi.org/10.1242/jcs.01221
  35. Matsuo, K., Xiang, Y., Nakamura, H., Masuko, K., Yudoh, K., Noyori, K., Nishioka, K., Saito, T., and Kato, T. (2006). Identification of novel citrullinated autoantigens of synovium in rheumatoid arthritis using a proteomic approach. Arthritis Res. Ther. 8, R175. https://doi.org/10.1186/ar2085
  36. Mizoguchi, M., Manabe, M., Kawamura, Y., Kondo, Y., Ishidoh, K., Kominami, E., Watanabe, K., Asaga, H., Senshu, T., and Ogawa, H. (1998). Deimination of 70-kD nuclear protein during epidermal apoptotic events in vitro. J. Histochem. Cytochem. 46, 1303-1309. https://doi.org/10.1177/002215549804601110
  37. Moisan, E., and Girard, D. (2006). Cell surface expression of intermediate filament proteins vimentin and lamin B1 in human neutrophil spontaneous apoptosis. J. Leukoc. Biol. 79, 489-498. https://doi.org/10.1189/jlb.0405190
  38. Morishima, N. (1999). Changes in nuclear morphology during apoptosis correlate with vimentin cleavage by different caspases located either upstream or downstream of Bcl-2 action. Genes Cells 4, 401-414. https://doi.org/10.1046/j.1365-2443.1999.00270.x
  39. Mor-Vaknin, N., Punturieri, A., Sitwala, K., and Markovitz, D.M. (2003). Vimentin is secreted by activated macrophages. Nat. Cell Biol. 5, 59-63.
  40. Moscarello, M.A., Mastronardi, F.G., and Wood, D.D. (2007). The role of citrullinated proteins suggests a novel mechanism in the pathogenesis of multiple sclerosis. Neurochem. Res. 32, 251-256. https://doi.org/10.1007/s11064-006-9144-5
  41. Nakashima, K., Hagiwara, T., Ishigami, A., Nagata, S., Asaga, H., Kuramoto, M., Senshu, T., and Yamada, M. (1999). Molecular characterization of peptidylarginine deiminase in HL-60 cells induced by retinoic acid and 1alpha,25-dihydroxyvitamin D(3). J. Biol. Chem. 274, 27786-27792. https://doi.org/10.1074/jbc.274.39.27786
  42. Nakashima, K., Hagiwara, T., and Yamada, M. (2002). Nuclear localization of peptidylarginine deiminase V and histone deimination in granulocytes. J. Biol. Chem. 277, 49562-49568.
  43. Nicholas, A.P. (2011). Dual immunofluorescence study of citrullinated proteins in Parkinson diseased substantia nigra. Neurosci. Lett. 495, 26-29. https://doi.org/10.1016/j.neulet.2011.03.028
  44. Nicholas, A.P., Sambandam, T., Echols, J.D., and Tourtellotte, W.W. (2004). Increased citrullinated glial fibrillary acidic protein in secondary progressive multiple sclerosis. J. Comp. Neurol. 473, 128-136. https://doi.org/10.1002/cne.20102
  45. Nishizuka, Y. (1988). The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 334, 661-665. https://doi.org/10.1038/334661a0
  46. Podor, T.J., Singh, D., Chindemi, P., Foulon, D.M., McKelvie, R., Weitz, J.I., Austin, R., Boudreau, G., and Davies, R. (2002). Vimentin exposed on activated platelets and platelet microparticles localizes vitronectin and plasminogen activator inhibitor complexes on their surface. J. Biol. Chem. 277, 7529-7539. https://doi.org/10.1074/jbc.M109675200
  47. Prasad, S.C., Thraves, P.J., Kuettel, M.R., Srinivasarao, G.Y., Dritschilo, A., and Soldatenkov, V.A. (1998). Apoptosis-associated proteolysis of vimentin in human prostate epithelial tumor cells. Biochem. Biophys. Res. Commun. 249, 332-338. https://doi.org/10.1006/bbrc.1998.9137
  48. Pritzker, L.B., Joshi, S., Gowan, J.J., Harauz, G., and Moscarello, M.A. (2000). Deimination of myelin basic protein. 1. Effect of deimination of arginyl residues of myelin basic protein on its structure and susceptibility to digestion by cathepsin D. Biochemistry 39, 5374-5381. https://doi.org/10.1021/bi9925569
  49. Savill, J. (1997). Apoptosis in resolution of inflammation. J. Leukoc. Biol. 61, 375-380. https://doi.org/10.1002/jlb.61.4.375
  50. Savill, J.S., Wyllie, A.H., Henson, J.E., Walport, M.J., Henson, P.M., and Haslett, C. (1989). Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages. J. Clin. Invest. 83, 865-875. https://doi.org/10.1172/JCI113970
  51. Senshu, T., Kan, S., Ogawa, H., Manabe, M., and Asaga, H. (1996). Preferential deimination of keratin K1 and filaggrin during the terminal differentiation of human epidermis. Biochem. Biophys. Res. Commun. 225, 712-719. https://doi.org/10.1006/bbrc.1996.1240
  52. Starr, A.E., Bellac, C.L., Dufour, A., Goebeler, V., and Overall, C.M. (2012). Biochemical characterization and N-terminomics analysis of leukolysin, the membrane-type 6 matrix metalloprotease (MMP25): chemokine and vimentin cleavages enhance cell migration and macrophage phagocytic activities. J. Biol. Chem. 287, 13382-13395. https://doi.org/10.1074/jbc.M111.314179
  53. Takahara, H., Okamoto, H., and Sugawara, K. (1986). Affinity chromatography of peptidylarginine deiminase from rabbit skeletal muscle on a column of soybean trypsin inhibitor (Kunitz)-Sepharose. J. Biochem. 99, 1417-1424. https://doi.org/10.1093/oxfordjournals.jbchem.a135611
  54. Tarcsa, E., Marekov, L.N., Mei, G., Melino, G., Lee, S.C., and Steinert, P.M. (1996). Protein unfolding by peptidylarginine deiminase. Substrate specificity and structural relationships of the natural substrates trichohyalin and filaggrin. J. Biol. Chem. 271, 30709-30716. https://doi.org/10.1074/jbc.271.48.30709
  55. Tilleman, K., Van Steendam, K., Cantaert, T., De Keyser, F., Elewaut, D., and Deforce, D. (2008). Synovial detection and autoantibody reactivity of processed citrullinated isoforms of vimentin in inflammatory arthritides. Rheumatology 47, 597-604 https://doi.org/10.1093/rheumatology/ken077
  56. Truneh, A., Albert, F., Golstein, P., and Schmitt-Verhulst, A.M. (1985). Early steps of lymphocyte activation bypassed by synergy between calcium ionophores and phorbol ester. Nature 313, 318-320. https://doi.org/10.1038/313318a0
  57. Umeda, N., Matsumoto, I., Ito, I., Kawasaki, A., Tanaka, Y., Inoue, A., Tsuboi, H., Suzuki, T., Hayashi, T., Ito, S., et al. (2013) Anticitrullinated glucose-6-phosphate isomerase peptide antibodies in patients with rheumatoid arthritis are associated with HLADRB1 shared epitope alleles and disease activity. Clin. Exp. Immunol. 172, 44-53. https://doi.org/10.1111/cei.12033
  58. Van Steendam, K., Tilleman, K., De Ceuleneer, M., De Keyser, F., Elewaut, D., and Deforce, D. (2010). Citrullinated vimentin as an important antigen in immune complexes from synovial fluid of rheumatoid arthritis patients with antibodies against citrullinated proteins. Arthritis Res. Ther. 12, R132. https://doi.org/10.1186/ar3070
  59. Van Steendam, K., Tilleman, K., and Deforce, D. (2011). The relevance of citrullinated vimentin in the production of antibodies against citrullinated proteins and the pathogenesis of rheumato id arthritis. Rheumatology 50, 830-837. https://doi.org/10.1093/rheumatology/keq419
  60. Van Venrooij, W.J., van Beers, J.J., and Pruijn, G.J. (2011). Anti-CCP antibodies: the past, the present and the future. Nat. Rev. Rheumatol. 7, 391-398. https://doi.org/10.1038/nrrheum.2011.76
  61. Vossenaar, E.R., Zendman, A.J., van Venrooij, W.J., and Pruijn, G.J. (2003). PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. Bioessays 25, 1106-1118. https://doi.org/10.1002/bies.10357
  62. Vossenaar, E.R., Despres, N., Lapointe, E., van der Heijden, A., Lora, M., Senshu, T., van Venrooij, W.J., and Menard, H.A. (2004a) Rheumatoid arthritis specific anti-Sa antibodies target citrullinated vimentin. Arthritis Res. Ther. 6, R142-150 https://doi.org/10.1186/ar1149
  63. Vossenaar, E.R., Radstake, T.R., van der Heijden, A., van Mansum, M.A., Dieteren, C., de Rooij, D.J., Barrera, P., Zendman, A.J., and van Venrooij, W.J. (2004b). Expression and activity of citrullinating peptidylarginine deiminase enzymes in monocytes and macrophages. Ann. Rheum. Dis. 63, 373-381. https://doi.org/10.1136/ard.2003.012211
  64. Wang, N., and Stamenovic, D. (2002). Mechanics of vimentin intermediate filaments. J. Muscle Res. Cell Motil. 23, 535-540. https://doi.org/10.1023/A:1023470709071
  65. Zhou, Z., and Menard, H.A. (2002). Autoantigenic posttranslational modifications of proteins: does it apply to rheumatoid arthritis? Curr. Opin. Rheumatol. 14, 250-253. https://doi.org/10.1097/00002281-200205000-00010

Cited by

  1. Identification of target antigens of naturally occurring autoantibodies in cerebrospinal fluid vol.128, 2015, https://doi.org/10.1016/j.jprot.2015.05.005
  2. Reversion of malignant phenotypes of human glioblastoma cells by β-elemene through β-catenin-mediated regulation of stemness-, differentiation- and epithelial-to-mesenchymal transition-related molecules vol.13, pp.1, 2015, https://doi.org/10.1186/s12967-015-0727-2
  3. Cigarette Smoke Induces Immune Responses to Vimentin in both, Arthritis-Susceptible and -Resistant Humanized Mice vol.11, pp.9, 2016, https://doi.org/10.1371/journal.pone.0162341
  4. Cardioprotective effects of monocyte locomotion inhibitory factor on myocardial ischemic injury by targeting vimentin vol.167, 2016, https://doi.org/10.1016/j.lfs.2016.10.021
  5. Identification of Padi2 as a novel angiogenesis-regulating gene by genome association studies in mice vol.13, pp.6, 2017, https://doi.org/10.1371/journal.pgen.1006848
  6. A molecular signature of preclinical rheumatoid arthritis triggered by dysregulated PTPN22 vol.1, pp.17, 2016, https://doi.org/10.1172/jci.insight.90045
  7. Molecular targeting of protein arginine deiminases to suppress colitis and prevent colon cancer vol.6, pp.34, 2014, https://doi.org/10.18632/oncotarget.5937
  8. Role of vimentin in modulating immune cell apoptosis and inflammatory responses in sepsis vol.9, pp.None, 2014, https://doi.org/10.1038/s41598-019-42287-7
  9. An Overview of the Intrinsic Role of Citrullination in Autoimmune Disorders vol.2019, pp.None, 2014, https://doi.org/10.1155/2019/7592851
  10. Citrullination in Cancer vol.79, pp.7, 2014, https://doi.org/10.1158/0008-5472.can-18-2797
  11. Vimentin modulates apoptosis and inflammatory cytokine release by a human monocytic cell line (THP-1) in response to lipopolysaccharides in vitro vol.132, pp.11, 2014, https://doi.org/10.1097/cm9.0000000000000187
  12. Ependymoma Pediatric Brain Tumor Protein Fingerprinting by Integrated Mass Spectrometry Platforms: A Pilot Investigation vol.12, pp.3, 2014, https://doi.org/10.3390/cancers12030674
  13. Vimentin citrullination probed by a novel monoclonal antibody serves as a specific indicator for reactive astrocytes in neurodegeneration vol.46, pp.7, 2014, https://doi.org/10.1111/nan.12620
  14. PADI2 Polymorphisms Are Significantly Associated With Rheumatoid Arthritis, Autoantibodies Serologic Status and Joint Damage in Women from Southern Mexico vol.12, pp.None, 2014, https://doi.org/10.3389/fimmu.2021.718246
  15. Peptidylarginine Deiminase 2 in Host Immunity: Current Insights and Perspectives vol.12, pp.None, 2014, https://doi.org/10.3389/fimmu.2021.761946
  16. Circulating Vimentin Is Associated With Future Incidence of Stroke in a Population-Based Cohort Study vol.52, pp.3, 2014, https://doi.org/10.1161/strokeaha.120.032111
  17. Histone citrullination: a new target for tumors vol.20, pp.1, 2014, https://doi.org/10.1186/s12943-021-01373-z