• Title/Summary/Keyword: Cellular Automata simulation

Search Result 81, Processing Time 0.025 seconds

Extraction and Application of Spatial Association Rules: A Case Study for Urban Growth Modeling (공간 연관규칙의 추출과 적용 - 도시성장 예측모델을 사례로 -)

  • 조성휘;박수홍
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.3
    • /
    • pp.444-456
    • /
    • 2004
  • Recently spatial modeling that combined GIS and Cellular Automata(CA) which are based on dynamic process modeling has been discussed and investigated. However, CA-based spatial modeling in previous research only provides the general modeling framework and environment, but lacks of providing simulation or transition rules for modeling. This study aims to propose a methodology for extracting spatial relation rules using GIS and Knowledge Discovery in Database(KDD) methods. This new methodology has great potentials to improve CA-based spatial modeling and is expected to be applied into several examples including urban growth simulation modeling.

Cellular Automata Model of Depolarization Process in Myocardial Cells (심실 세포에서 탈분극 과정의 세포 오토마타 모델)

  • Chang, Yong-Hoon;Jeon, Gye-Rok;Lee, Kwon-Soon;Eom, Sang-Hee;Lee, Sang-Yeol
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.82-86
    • /
    • 1995
  • Using electrocardiography is a common method to diagnose heart disease, Modeling and simulation of activation process for the heart system is useful to understand electrocardiography. This paper proposes a two-dimensional cellular automata model for the activation process of the ventricles. The model represents the geometry of the ventricles by the ellipsoidal shape in two dimension. In the model, ventricles are divided into four layers, each of which has a set of cells with preassigned properties. The proposed model takes Into account the local orientation of the myocardial fibers and their distributed velocity, and refractory period. Simulation experiment is performed to measure activation potential for each cell in each layer within the ventricles.

  • PDF

Implementation of Crowd Behavior of Pedestrain based AB and CA mathematical model in Intelligent Game Environment (게임환경에서 AB 와 CA 수학모델을 이용한 보행자들의 집단행동 구현)

  • Kim, Seongdong;Kim, Jonghyun
    • Journal of Korea Game Society
    • /
    • v.19 no.6
    • /
    • pp.5-14
    • /
    • 2019
  • In this paper, we propose a modeling and simulation of group behavioral movement of pedestrians using Agent based and Cellular Automata model in intelligent game environment. The social behaviors of the crowds are complex and important, and based on this, the prototype game-model was implemented to show the crowd interaction on AB and CA in the game environment. Our experiment revealed the promise of group behaviour as a cost-efficient, yet accurate platform for researching crowd behaviour in risk situations with real models.

A Unity-based Simulator for Tsunami Evacuation with DEVS Agent Model and Cellular Automata (DEVS 에이전트 모델과 셀 오토마타를 사용한 유니티엔진 기반의 지진해일 대피 시뮬레이터 개발)

  • Lee, Dong Hun;Kim, Dong Min;Joo, Jun Mo;Joo, Jae Woo;Choi, Seon Han
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.6
    • /
    • pp.772-783
    • /
    • 2020
  • Tsunami is a frightful natural disaster that causes severe damages worldwide. To minimize the damage, South Korea has built a tsunami warning system and designated evacuation sites in the east and south coasts. However, such countermeasures have not been verified whether they are adequate to minimize casualties since tsunami rarely occurs in South Korea. Recently, due to increasing earthquakes in the west coast of Japan, the likelihood of South Korea entering the damage area of tsunami rises; thus, in this paper, we develops a simulator based on Unity game engine to simulate the evacuation from tsunami. In order to increase the fidelity of the simulation results, the simulator applies a tsunami simulation model that analyzes coastal inundation based on cellular automata. In addition, the objects included in tsunami evacuation, such as humans, are modeled as an agent model that determines the situation and acts itself, based on the discrete-event system specification (DEVS), a mathematical formalism for describing a discrete event system. The tsunami simulation model and agent models are integrated and visualized in the simulator using Unity game engine. As an example of the use of this simulator, we verify the existing tsunami evacuation site in Gwangalli Beach in Busan and suggest the optimal alternative site minimizing casualties.

Design of Extendable BCD-EXCESS 3 Code Convertor Using Quantum-Dot Cellular Automata (확장성을 고려한 QCA BCD-3초과 코드 변환기 설계)

  • You, Young-won;Jeon, Jun-cheol
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.1
    • /
    • pp.65-71
    • /
    • 2016
  • Quantum-dot cellular automata (QCA) consists of nano-scale cells and demands very low power consumption so that it is one of the alternative technologies that can overcome the limits of scaling CMOS technologies. Typical BCD-EXCESS 3 code converters using QCA have not considered the scalability so that the architectures are not suitable for a large scale circuit design. Thus, we design a BCD-EXCESS 3 code converter with scalability using QCADesigner and verify the effectiveness by simulation. Our structure have reduced 32 gates and 7% of garbage space rate compare with typical URG BCD-EXCESS 3 code converter. Also, 1 clock is only needed for circuit expansion of our structure though typical QCA BCD-EXCESS 3 code converter demands 7 clocks.

A study on the Urban Growth Model of Gimhae City Using Cellular Automata (셀룰라 오토마타를 이용한 김해시의 도시성장모형에 관한 연구 - 1987~2001년을 중심으로 -)

  • Lee, Sung Ho;Yun, Jeong Mi;Seo, Kyung Chon;Nam, Kwang Woo;Park, Sang Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.3
    • /
    • pp.118-125
    • /
    • 2004
  • The purpose of this study is to decide an appropriate neighborhood and a transition rule of cellular automata by analyzing the past growth process of urban areas in Gimhae. With cellular automata which can manage the change based on the dynamic model and time, this study analyzes the urban growth of Gimhae from 1987 to 2001. Also, through the simulation of different types for neighborhood and transition rules, we can find the appropriate neighborhood and the transition rule for Gimhae. In conclusion, the forecast of physical urban growth pattern is more accurate under conditions when the number of matrixes for the neighborhood is small, the shape of the neighborhood is rectangular, "${\alpha}$" value, which control the pace of urban growth, is low and the transition possibility ($P_{ij}$) is high.

  • PDF

Design of Programmable Quantum-Dot Cell Structure Using QCA Clocking Based D Flip-Flop (QCA 클록킹 방식의 D 플립플롭을 이용한 프로그램 가능한 양자점 셀 구조의 설계)

  • Shin, Sang-Ho;Jeon, Jun-Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.6
    • /
    • pp.33-41
    • /
    • 2014
  • In this paper, we propose a D flip-flop based on quantum-dot cellular automata(QCA) clocking and design a programmable quantum-dot cell(QPCA) structure using the proposed D flip-flop. Previous D flip-flops on QCA are that input should be set to an arbitrary value, and wasted output values exist because it was utilized to duplicate by clock pulse and QCA clocking. In order to eliminate these defects, we propose a D flip-flop structure using binary wire and clocking technique on QCA. QPCA structure consists of wire control logic, rule control logic, D flip-flop and XOR logic gate. In experiment, we perform the simulation of QPCA structure using QCADesigner. As the result, we confirm the efficiency of the proposed structure.

Cellular-Automata Based Node Scheduling Scheme for Wireless Sensor Networks (무선 센서 네트워크를 위한 셀룰러 오토마타 기반의 노드 스케줄링 제어)

  • Byun, Heejung;Shon, Sugook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.10
    • /
    • pp.708-714
    • /
    • 2014
  • Wireless sensor networks (WSNs) generally consist of densely deployed sensor nodes that depend on batteries for energy. Having a large number of densely deployed sensor nodes causes energy waste and high redundancy in sensor data transmissions. The problems of power limitation and high redundancy in sensing coverage can be solved by appropriate scheduling of node activity among sensor nodes. In this paper, we propose a cellular automata based node scheduling algorithm for prolonging network lifetime with a balance of energy savings among nodes while achieving high coverage quality. Based on a cellular automata framework, we propose a new mathematical model for the node scheduling algorithm. The proposed algorithm uses local interaction based on environmental state signaling for making scheduling decisions. We analyze the system behavior and derive steady states of the proposed system. Simulation results show that the proposed algorithm outperforms existing protocols by providing energy balance with significant energy savings while maintaining sensing coverage quality.

Three-dimensional Computational Modeling and Simulation of Intergranular Corrosion Propagation of Stainless Steel

  • Igarashi, T.;Komatsu, A.;Motooka, T.;Ueno, F.;Yamamoto, M.
    • Corrosion Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.105-111
    • /
    • 2021
  • In oxidizing nitric acid solutions, stainless steel undergoes intergranular corrosion accompanied by grain dropping and changes in the corrosion rate. For the safe operation of reprocessing plants, this mechanism should be understood. In this study, we constructed a three-dimensional computational model using a cellular automata method to simulate the intergranular corrosion propagation of stainless steel. The computational model was constructed of three types of cells: grain (bulk), grain boundary (GB), and solution cells. Model simulations verified the relationship between surface roughness during corrosion and dispersion of the dissolution rate of the GB. The relationship was investigated by simulation applying a constant dissolution rate and a distributed dissolution rate of the GB cells. The distribution of the dissolution rate of the GB cells was derived from the intergranular corrosion depth obtained by corrosion tests. The constant dissolution rate of the GB was derived from the average dissolution rate. Surface roughness calculated by the distributed dissolution rates of the GBs of the model was greater than the constant dissolution rates of the GBs. The cross-sectional images obtained were comparable to the corrosion test results. These results indicate that the surface roughness during corrosion is associated with the distribution of the corrosion rate.