Browse > Article
http://dx.doi.org/10.9723/jksiis.2014.19.6.033

Design of Programmable Quantum-Dot Cell Structure Using QCA Clocking Based D Flip-Flop  

Shin, Sang-Ho (경북대학교 컴퓨터학부)
Jeon, Jun-Cheol (금오공과대학교 컴퓨터공학과)
Publication Information
Journal of Korea Society of Industrial Information Systems / v.19, no.6, 2014 , pp. 33-41 More about this Journal
Abstract
In this paper, we propose a D flip-flop based on quantum-dot cellular automata(QCA) clocking and design a programmable quantum-dot cell(QPCA) structure using the proposed D flip-flop. Previous D flip-flops on QCA are that input should be set to an arbitrary value, and wasted output values exist because it was utilized to duplicate by clock pulse and QCA clocking. In order to eliminate these defects, we propose a D flip-flop structure using binary wire and clocking technique on QCA. QPCA structure consists of wire control logic, rule control logic, D flip-flop and XOR logic gate. In experiment, we perform the simulation of QPCA structure using QCADesigner. As the result, we confirm the efficiency of the proposed structure.
Keywords
Quantum-Dot Programmable Cellular Automata; Quantum-dot cellular automata clocking technique; D flip-flop; QCADesigner;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 K. Pagiamtzis and A. Sheikholeslami, "Content-Addressable Memory (CAM) Circuits and Architectures: A Tutorial and Survey", IEEE Journal of Solid-State Circuits, Vol. 41, No. 3, pp. 712-727, 2006.   DOI   ScienceOn
2 B. E. Akgul, L. N. Chakrapani, P. Korkmaz, and K. V. Palem, "Probabilistic CMOS Technology: A Survey and Future directions", Proceedings of 2006 IFIP International Conference on IEEE, pp. 1-6, 2006.
3 G. Y. Cho, "Newton-Raphson's Double Precision Reciprocal Using 32-bit Multiplier", Journal of the Korea Industrial Information System Society, Vol. 18, No. 6, pp. 31-37, 2013.   과학기술학회마을   DOI
4 E. H. Ahn and J. R. Choi, "High Speed TCAM Design Using SRAM Cell Stability", Journal of the Korea Industrial Information System Society, Vol. 18, No. 5, pp. 19-23, 2013.   과학기술학회마을   DOI
5 P. P. Chaudhuri, Additive Cellular Automata: Theory and Applications, vol. 1, John Wiley & Sons, pp. 52-55, 1997.
6 A. Khurasia, and P. Gambhir, Quantum Cellular Automata, Final Project Report, 2006.
7 A. S. Shamsabadi, B. S. Ghahfarokhi, K. Zamanifar, and N. Movahedinia, "Applying Inherent Capabilities of Quantum-dot Cellular Automata to Design: D Flip-flop Case Study", Journal of Systems Architecture, Vol. 55, No. 3, pp. 180-187, 2009.   DOI   ScienceOn
8 C. S. Lent, P. D. Tougaw, W. Porod, and G. H. Bernstein, "Quantum Cellular Automata", Nanotechnology, Vol. 4, No. 1, pp. 49-57, 1993.   DOI   ScienceOn
9 M. R. Beigh, M. Mustafa, and F. Ahmad, "Performance Evaluation of Efficient XOR Structures in Quantum-Dot Cellular Automata (QCA)", Circuits and Systems, Vol. 4, No. 2, pp. 147-156, 2013.   DOI
10 Microsystems and the University of British Columbia Nanotechnology Group. QCADesigner, 2007, [Internet]. Available: http://www.mina.ubc.ca/qcadesigner/.
11 K. Walus, T. J. Dysart, G. A. Jullien, and R. A. Budiman, "QCADesigner: A Rapid Design and Simulation Tool for Quantum-dot Cellular Automata", IEEE Trans. Nanotechnology, Vol. 3, No. 1, pp. 26-31, 2004.   DOI   ScienceOn
12 J. R. Janulis, P. D. Tougaw, S. C. Henderson, and E. W. Johnson, "Serial Bit-Stream Analysis Using Quantum-dot Cellular Automata", IEEE Trans. Nanotechnology, Vol. 3, No. 1, pp. 158-164, 2004.   DOI   ScienceOn
13 H. Cho, and E. E. Swartzlander, "Adder Designs and Analyses for Quantum-dot Cellular Automata", IEEE Trans. Nanotechnology, Vol. 6, No. 3, pp. 374-383, 2007.   DOI   ScienceOn
14 V. Vankamamidi, M. Ottavi, and F. Lombardi, "A Serial Memory by Quantum-dot Cellular Automata (QCA)", IEEE Trans., Computers, Vol. 57, No. 5, pp. 606-618, 2008.   DOI   ScienceOn
15 P. D. Tougaw, and M. Khatun, "A Scalable Signal Distribution Network for Quantum-dot Cellular Automata", IEEE Trans. Nanotechnology, Vol. 12, No. 2, pp. 215-224, 2013.   DOI   ScienceOn