• Title/Summary/Keyword: Cell transplants

Search Result 32, Processing Time 0.022 seconds

Allogeneic Hemopietic Stem Cell Transplants for the Treatment of B Cell Acute Lymphocytic Leukemia

  • Dong, Wei-Min;Cao, Xiang-Shan;Wang, Biao;Lin, Yun;Hua, Xiao-Ying;Qiu, Guo-Qiang;Gu, Wei-Ying;Xie, Xiao-Bao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6127-6130
    • /
    • 2014
  • Objective: Explore the feasibility of allo-hemopietic stem cell transplants in treating patients with B cell acute lymphocytic leukemia. Methods: Between september 2006 and February 2011, fifteen patients with B cell acute lymphocytic leukemia (ALL) were treated by allo-hemopietic stem cell transplants (HSCT). Stem cell sources were peripheral blood. Six patients were conditioned by busulfan (BU) and cyclophosphamide (CY) and nine patients were conditioned with TBI and cyclophosphamide (CY). Graft versus host disease (GVHD) prophylaxis regimen consisted of cyclosporine A (CSA), methotrex ate (MTX) and mycophenolatemofetil (MMF). Results: Patients received a median of $7.98{\times}10^8{\cdot}kg^{-1}$ ($5.36-12.30{\times}10^8{\cdot}kg^{-1}$) mononuclear cells (MNC). The median time of ANC> $0.5{\times}10^9/L$ was day 12 (10-15), and PLT> $20.0{\times}10^9/L$ was day 13 (11-16). Extensive acute GVHD occurred in 6 (40.0%) patients, and extensive chronic GVHD was recorded in 6 (40.0%) patients. Nine patients were alive after 2.5-65 months follow-up. Conclusion: Allogeneic stem cell transplant could be effective in treating patients with B cell acute lymphocytic leukemia.

Transplant Quality and the Yield of 'Momotaro-Yoku' Tomato as Affected by Seedling Age and Container Size Used for Raising Seedling in Summer (모모타로-요쿠 토마토 하계 육묘시 용기 크기와 묘령이 정식 후 생육 및 수량에 미치는 영향)

  • 최영하;조정래;이한철;박동금;권준국;이재한
    • Journal of Bio-Environment Control
    • /
    • v.11 no.1
    • /
    • pp.12-17
    • /
    • 2002
  • Tn establish the criteria for appropriate seedling production method in the summer, the effect of container size and seedling age on the growth and yield were evaluated with tomato. The seedling quality was higher when seedlings were grown polyethylene in 9cm pots than in 72 cell plugs. Seedling quality increased with increase in seedling age in polyethylene pots, whereas seedling age did not affect seedling quality in plug trays. Fruits matured earlier on plants started from pot-grown transplants for a long duration than with plug tray-grown transplants for a shorter duration. Not only total yield in 4 months, but the early yield in the first 2 months, was higher with pot-nursed transplants than with plug tray-nursed transplants. With pot-grown transplants, The early yield in initial 2 months was the lowest in 25 day-old transplants, whereas there was no significant differences between 35- and 45-day-old transplants. Seedling age did not affect the cumulative yield for 3 months after the first harvest. With plug tray-grown transplants, the cumulative yield tar initial 3 months was the highest in plants grown for 35 days in the nursery, followed by 25 day and 45 day. However, there were no significant differences among seedling ages in the total yield.

BONE FORMATION BY HUMAN ALVEOLAR BONE CELLS (사람 치조골세포를 이용한 골형성)

  • Choi, Byung-Ho;Park, Jin-Hyoung;Huh, Jin-Young;Oh, Jin-Rok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.1
    • /
    • pp.42-45
    • /
    • 2002
  • Cultures of primary human alveolar bone-derived cells were established from alveolar bone chips obtained from normal individuals undergoing tooth extraction. These cells were expanded in vitro until passage 3 and used for the in vivo assays. Cells were loaded into transplantation vehicles, and transplanted subcutaneously into immunodeficient mice to study the capacities of human alveolar bone-derived cells to form bone in vivo. Transplants were harvested 12 weeks after transplantation and evaluated histologically. Of 10 human alveolar bone-derived cell transplants, two formed a bone-like tissue that featured osteocytes and mineral. Eight of the ten formed no osseous tissue. These results show that cells from normal human alveolar bone are capable of forming bone-like tissue when transplanted into immunodeficient mice.

Expression of DSPP mRNA During Differentiation of Human Dental Pulp-derived Cells (HDPC) and Transplantation of HDPC Using Alginate Scaffold

  • Aikawa, Fumiko;Nakatsuka, Michiko;Kumabe, Shunji;Jue, Seong-Suk;Hayashi, Hiroyuki;Shin, Je-Won;Iwai, Yasutomo
    • International Journal of Oral Biology
    • /
    • v.31 no.3
    • /
    • pp.73-79
    • /
    • 2006
  • Tissue stem cells are used for the regenerative medicine. In previous study we observed hard tissue formation of human dental pulp-derived cells using alginate scaffold. In this study, we explore the ability to differentiate of the 13th passage cells with glycerol 2-phosphate disodium salt hydrate (${\beta}-GP$) which accelerate calcification. Reverse transcriptase Polymerase Chain Reaction (RT-PCR), transplants using alginate scaffold and histological examination were performed. We observed the expression of DSPP mRNA on day 10 cultured cells with ${\beta}-GP$. In conclusion, the 13th passage cells still have an ability to differentiate into odontoblast-like cells and alginate supports the differentiation of cultured cells in the transplants.

In Vivo Generation of Organs by Blastocyst Complementation: Advances and Challenges

  • Konstantina-Maria Founta;Costis Papanayotou
    • International Journal of Stem Cells
    • /
    • v.15 no.2
    • /
    • pp.113-121
    • /
    • 2022
  • The ultimate goal of regenerative medicine is to replace damaged cells, tissues or whole organs, in order to restore their proper function. Stem cell related technologies promise to generate transplants from the patients' own cells. Novel approaches such as blastocyst complementation combined with genome editing techniques open up new perspectives for organ replacement therapies. This review summarizes recent advances in the field and highlights the challenges that still remain to be addressed.

The Use of Stem Cells as Medical Therapy (줄기세포를 이용한 세포치료법)

  • Son Eun-Hwa;Pyo Suhkneung
    • KSBB Journal
    • /
    • v.20 no.1 s.90
    • /
    • pp.1-11
    • /
    • 2005
  • Recently, there has been extremely active in the research of stem cell biology. Stem cells have excellent potential for being the ultimate source of transplantable cells for many different tissues. Researchers hope to use stem cells to repair or replace diseased or damaged organs, leading to new treatments for human disorders that are currently incurable, including diabetes, spinal cord injury and brain diseases. There are primary sources of stem cells like embryonic stem cells and adult stem cells. Stem cells from embryos were known to give rise to every type of cell. However, embryonic stem cells still have a lot of disadvantages. First, transplanted cells sometimes grow into tumors. Second, the human embryonic stem cells that are available for research would be rejected by a patient's immune system. Tissue-matched transplants could be made by either creating a bank of stem cells from more human embryos, or by cloning a patient's DNA into existing stem cells to customize them. However, this is laborious and ethically contentious. These problems could be overcome by using adult stem cells, taken from a patient, that are treated to remove problems and then put back. Nevertheless, some researchers do not convince that adult stem cells could, like embryonic ones, make every tissue type. Human stem cell research holds enormous potential for contributing to our understanding of fundamental human biology. In this review, we discuss the recent progress in stem cell research and the future therapeutic applications.

Stress, Coping, and Depression in Patients Following Hemopoietic Stem Cell Transplantation (조혈모세포이식 환자의 스트레스, 대처 및 우울)

  • Kim, Kyung-Eon;Yoo, Yang-Sook
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.13 no.3
    • /
    • pp.437-446
    • /
    • 2006
  • Purpose: This study was done to identify the level of stress, coping, and depression among hemopoietic stem cell transplantation patients who received care in an outpatient center. Method: Data were collected from 81 patients who underwent hemopoietic stem cell transplantation at C University S Hospital between August 2005 and February 2006. Results: Stress and depression were significantly higher following hemopoietic stem cell transplantation in women, and in patients who were worse off financially or who were in bad health. The highest item of stress was 'economic burden for treatment'. There were significantly higher levels of emotion-focused coping among patients who had a spouse and who received motivation from the doctor. The highest item for problem-focused coping was 'try to look at the bright side of life'. The highest items for emotion-focused coping were to 'have faith that treatment will be finished quickly' and 'believe that your situation will improve'. Stress was significantly correlated with depression among these patients. Conclusion: It is necessary to develop nursing interventions to enhance positive coping and to decrease stress and depression among patients who have a hemopoietic stem cell transplantation.

  • PDF

Fat grafts enriched with adipose-derived stem cells

  • Hong, Ki Yong
    • Archives of Craniofacial Surgery
    • /
    • v.21 no.4
    • /
    • pp.211-218
    • /
    • 2020
  • Autologous fat grafts are widely used in soft-tissue augmentation and reconstruction. To reduce the unpredictability of fat grafts and to improve their long-term survival, cell-assisted lipotransfer (CAL) was introduced. In this alternative method, autologous fat is mixed and grafted with stromal vascular fraction cells or adipose-derived stem/stromal cells (ASCs). In regenerative medicine, ASCs exhibit excellent therapeutic potential and are also simple to harvest. Although the efficacy of CAL has been demonstrated in experimental and clinical research, studies on its safety in terms of oncologic risk have reported inconclusive results. In order to establish CAL as a viable stem cell therapeutic approach, it will be necessary to demonstrate its oncologic safety in basic and clinical studies. Doing so could transform the paradigm of clinical strategy and practice for the treatment of a wide variety of diseases.

Humanized (SCID) Mice as a Model to Study human Leukemia

  • Lee, Yoon;Kim, Donghyun Curt;Kim, Hee-Je
    • Biomedical Science Letters
    • /
    • v.21 no.2
    • /
    • pp.51-59
    • /
    • 2015
  • A humanized mice (hu-mice) model is extremely valuable to verify human cell activity in vivo condition and is regarded as an important tool in examining multimodal therapies and drug screening in tumor biology. Moreover, hu-mice models that simply received human $CD34^+$ blood cells and tissue transplants are also overwhelmingly useful in immunology and stem cell biology. Because generated hu-mice harboring a human immune system have displayed phenotype of human $CD45^+$ hematopoietic cells and when played partly with functional immune network, it could be used to evaluate human cell properties in vivo. Although the hu-mice model does not completely recapitulate human condition, it is a key methodological factor in studying human hematological malignancies with impaired immune cells. Also, an advanced humanized leukemic mice (hu-leukemic-mice) model has been developed by improving immunodeficient mice. In this review, we briefly described the history of development on immunodeficient SCID strain mice for hu-and hu-leukemic-mice model for immunologic and tumor microenviromental study while inferring the potential benefits of hu-leukemic-mice in cancer biology.

Chondrocyte Culture from Epiphyseal Plate and its Morphological Changes in Autologous Implants of Rabbit (토끼 성장판 연골세포 배양과 자가 이식편에서의 형태학적인 변화)

  • 양영철;정해일;최장석
    • Journal of Life Science
    • /
    • v.10 no.4
    • /
    • pp.408-421
    • /
    • 2000
  • We tried to establish the culture method of the chondrocyte isolated from the epiphyseal cartilage and to investigate morphological changes of chondrocyte cultured with enzyme-digested costal cartilage, the perichondrium and experimentally damaged meniscus of rabbit. De novo chondrocyte pellets were prepared from epiphyseal plates by culturing isolated epiphyseal chondrocytes from 4 week. old rabbits. We morphologically assessed the cartilage formation of the chondrocyte culture with enzyme-digested costal carilage, the perichondrial culture, the cultured chondrocytes transplants into experimentally damaged meniscus of rabbits, the perichondrial culture, the cultured chondrocytes transplants into experimentally damaged meniscus of rabbit. In the 24 days, the epiphyseal chondrocytes maintained the typical phenotypes of the partial nodular cell formation. The 30 days cryopreserved chondrocytes showed abnormal and irregular shape. In the type II collagen added culture, the chondrocytes showed expanded rough endoplasmic reticulum and small and large round-like vesicles of processes. In the type IV collagen added culture, the chondrocytes showed large perinuclear vaculoes and abundant well-developed rough endoplasmic reticulum of processes. In the culture with enzyme- digested costal cartilage and the perichondrial culture, the chondrocytes showed a few swelling rough endoplasmic reticulum and vacuoles. The cultured epiphyseal chondrocytes maintained typical phenotype and the chondrocytes were grown faster and maintained more typical phenotype in the type II and IV collagen added culture. The transformed chondrocytes secreted abundant extracellular matrix in the type II collagen added culture, and showed processes in the type IV collagen added culture. The perichondrial chondrocytes were grown faster and their implants were able to transplant. The cultured chondrocytes transplanted into experimentally damaged meniscus were adapted between the meniscus tissues. And the immunocyto-chemical reaction of the type II collagen of the chondrocytes were found to be maintained. The chondrocytes cultured cartilage. The chondrocytes secreted abundantly. The cultured chondrocytes transplanted into experimentally damaged meniscus changed immature cells into enlarged mature cells with extracellular secretion.

  • PDF