• Title/Summary/Keyword: Cell temperature

Search Result 4,481, Processing Time 0.03 seconds

Comparison of CH4 Emission by Open-path and Closed Chamber Methods in the Paddy Rice Fields (벼논에서 open-path와 closed chamber 방법 간 메탄 배출량 비교)

  • Jeong, Hyun-cheol;Choi, Eun-jung;Kim, Gun-yeob;Lee, Sun-il;Lee, Jong-sik
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.507-516
    • /
    • 2018
  • The closed chamber method, which is one of the most commonly used method for measuring greenhouse gases produced in rice paddy fields, has limitations in measuring dynamic $CH_4$ flux with spatio-temporal constrains. In order to deal with the limitation of the closed chamber method, some studies based on open-path of eddy covariance method have been actively conducted recently. The aim of this study was to compare the $CH_4$ fluxes measured by open-path and closed chamber method in the paddy rice fields. The open-path, one of the gas ($CO_2$, $CH_4$ etc.) analysis methods, is technology where a laser beam is emitted from the source passes through the open cell, reflecting multiple times from the two mirrors, and then detecting. The $CH_4$ emission patterns by these two methods during rice cultivation season were similar, but the total $CH_4$ emission measured by open-path method were 31% less than of the amount measured by closed chamber. The reason for the difference in $CH_4$ emission was due to overestimation by closed chamber and underestimation by open-path. The closed chamber method can overestimate $CH_4$ emissions due to environmental changes caused by high temperature and light interruption by acrylic partition in chamber. On the other hand, the open-path method for eddy covariance can underestimate its emission because it assumes density fluctuations and horizontal homogeneous terrain negligible However, comparing $CH_4$ fluxes at the same sampling time (AM 10:30-11:00, 30-min fluxes) showed good agreements ($r^2=0.9064$). The open-path measurement technique is expected to be a good way to compensate for the disadvantage of the closed chamber method because it can monitor dynamic $CH_4$ fluctuation even if data loss is taken into account.

Characterization of Miniimonas sp. S16 isolated from activated sludge (활성슬러지로부터 분리된 Miniimons sp. S16 세균의 특성)

  • Koh, Hyeon-Woo;Kim, Hongik;Park, Soo-Je
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.242-247
    • /
    • 2019
  • Biological factors (e.g. microorganism activity) in wastewater treatment plant (WWTP) play essential roles for degradation and/or removal of organic matters. In this study, to understand the microbial functional roles in WWTP, we tried to isolate and characterize a bacterial strain from activated sludge sample. Strain S16 was isolated from the activated sludge of a municipal WWTP in Daejeon metropolitan city, the Republic of Korea. The cells were a Gram-stain-positive, non-motile, facultative anaerobe, and rod-shaped. Strain S16 grew at a temperature of $15{\sim}40^{\circ}C$ (optimum, $30^{\circ}C$), with 0~9.0% (w/v) NaCl (optimum, 1.0~2.0%), and at pH 5.5~9.0 (optimum, pH 7.0~7.5). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain S16 was most closely related to the unique species Miniimonas arenae NBRC $106267^T$ (99.79%, 16S rRNA gene sequence similarity) of the genus Miniimonas. The cell wall contained alanine, glutamic acid, serine, and ornithine. Although the isolation source of the type strain NBRC $106267^T$ which considered as a marine microorganism is sea sand, that of strain S16 is terrestrial environment. It might raise an ecological question for habitat transition. Therefore, comparative genome analysis will be valuable investigation for shedding light on their potential metabolic traits and genomic streamlining.

Antimicrobial activities of Burkholderia sp. strains and optimization of culture conditions (Burkholderia sp. OS17의 항균활성 증진을 위한 배양최적화)

  • Nam, Young Ho;Choi, Ahyoung;Hwang, Buyng Su;Chung, Eu Jin
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.428-435
    • /
    • 2018
  • In this study, we isolated and identified bacteria from freshwater and soil collected from Osang reservoir, to screen antimicrobial bacteria against various pathogenic bacteria. 38 strains were isolated and assigned to the class Proteobacteria (22 strains), Actinobacteria (7 strains), Bacteroidets (6 strains), and Firmicutes (3 strains) based on 16S rRNA gene sequence analysis. Among them, strain OS17 showed a good growth inhibition against 5 methicillin-resistant Staphylococcus aureus subsp. aureus strains and Bacillus cereus, Bacillus subtilis, Filobasidium neoformans. As a result of the 16S rRNA gene sequence analysis, strain OS17 show the high similarity with Burkholderia ambifaria $AMMD^T$, B. diffusa $AM747629^T$, B. tettitorii $LK023503^T$ 99.8%, 99.7%, 99.6%, respectively. We investigated cell growth and antimicrobial activity according to commercial culture medium, temperature, pH for culture optimization of strain OS17. Optimal conditions for growth and antimicrobial activity in strain OS17 were found to be: YPD medium, $35^{\circ}C$ and pH 6.5. When the strain was cultured in LB, NB, TSB, R2A media at $20^{\circ}C$ and $25^{\circ}C$, the antimicrobial activity did not show. Culture filtrate of strain OS17 showed antimicrobial activity against 5 MRSA strains, Bacillus cereus, Bacillus subtilis, and Filobasidium neoformans with inhibition zones from 2 to 8 mm. Optimal reaction time was 48 h in YPD medium, 100 rpm and 0.3 vvm in 2 L-scale fed-batch fermentation process for antimicrobial activity. Culture optimization of strain OS17 can be improved on antimicrobial activity. Therefore, the antimicrobial activity of Burkholderia sp. OS17 had potential as antibiotics for pathogens including MRSA.

Changes in chemical characteristics of cellulase-treated wheat germ extract (효소 처리 밀 배아 추출물의 화학적 특성 변화)

  • Lee, Jae-Kang;Jang, Davin;Kang, Dongwoo;Lee, Jeonghoon;Kum, Hyeim;Choi, Yonghyoun;Kang, Hee;Choi, Yong-Seok;Kim, Dae-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.2
    • /
    • pp.97-102
    • /
    • 2019
  • Wheat germ, which is rich in nutrients and phytochemicals, is a by-product during the milling process of wheat kernel. In this study, we aimed to increase the amount of bioactive 2,6-dimethoxy-1,4-benzoquinone (2,6-DMBQ) in wheat germ using the cell-wall-degrading enzyme cellulase (Celluclast 1.5L). The amounts of organic acids, free sugars, and 2,6-DMBQ in wheat germ treated with Celluclast 1.5L were evaluated at various reaction times and temperatures. The results of reversed-phase high-performance liquid chromatography of Celluclast 1.5L-treated wheat germ revealed 2,6-DMBQ, four organic acids (tartaric, acetic, lactic, and succinic acids), and three free sugars (sucrose, fructose, and glucose). As reaction time and temperature of the mixture of wheat germ and Celluclast 1.5L increased, the contents of four organic acids, glucose, fructose, and 2,6-DMBQ increased, but that of sucrose decreased. Taken together, these results suggest that Celluclast 1.5L-treated wheat germ containing increased amounts of 2,6-DMBQ serves as a source of functional ingredients in food industry.

The comparative study of predictive factors for prolonged length of stays that adult patients with acute appendicitis in emergency department (응급의료센터를 방문한 성인 급성 충수염 환자에서 재실 기간의 연장을 예측하는 인자에 대한 비교연구)

  • Jang, Young Jae;Kim, Sin Young;Hong, Dae Young;Baek, Kwang Je;Park, Sang O;Kim, Jong Won;Kim, Jin Yong;Lee, Kyeong Ryong
    • Journal of The Korean Society of Emergency Medicine
    • /
    • v.29 no.6
    • /
    • pp.671-678
    • /
    • 2018
  • Objective: This study examined the predictive factors for prolonged length of stays of adult patients with acute appendicitis (AA) in an emergency department (ED). Methods: This was a retrospectively clinical study including patients in an ED. All patients were diagnosed from the clinical symptoms and a typical physical examination, and had undergone a computed tomography (CT) evaluation on the ED visiting date. All data were collected from the electrical medical records. The clinical parameters analyzed were the laboratory data, including the white blood cell count with differential values, C-reactive protein (CRP) level, initial vital signs, duration of admission, coexisting perforation of the appendix in the CT findings. The relationship between the clinical parameters and length of stay was assessed. Results: A total of 547 patients with AA were enrolled in this study. Among them, there were 270 male patients with a mean age of $40.7{\pm}15.8years$. The baseline characteristics, initial clinical features, laboratory, and imaging studies results of 129 patients in the prolonged length of stay (pLOS) group, and 418 patients of the non-pLOS group in AA were compared. Multivariable logistic regression analysis revealed the predictive factors related to pLOS in AA to be as follows: age 40 years or older, body temperature over $37.3^{\circ}C$, CRP level greater than 5.0 mg/dL, and evidence of perforation in CT findings (P<0.001). Conclusion: If we check age, fever, CRP level and find evidence of perforation, it might be helpful for predicting the increasing period of length of hospital stay for patients with AA in ED.

Purification and Biochemical Characterization of β-agarase Produced by Marine Microorganism Cellulophga sp. J9-3 (해양미생물 Cellulophga sp. J9-3이 생산하는 베타-아가레이즈의 분리 및 생화학적 특성)

  • Kim, Da Som;Kim, Jong-Hee;Chi, Won-Jae
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.329-336
    • /
    • 2021
  • Cellulophga sp. J9-3, is a gram-negative, aerobic marine bacterium belonging to the family Flavobacteriaceae. In addition to cellulose degradability, the J9-3 strain is also capable of hydrolyzing agar in the solid and liquid medium, and the production of agarase in the presence of agarose can be remarkably induced by the bacterium. From the cell culture broth of Cellulophga sp. J9-3, ammonium sulfate precipitation and three kinds of column chromatography were successively performed to purify a specific agarase protein, the AgaJ93. Purified AgaJ93 showed the strongest hydrolyzing activity towards agarose (approximately 22%), and even displayed activity towards starch. AgaJ93 hydrolyzed agarose into neoagarotetraose and neoagarohexaose via various oligosaccharide intermediates, indicating that AgaJ93 is an endo-type β-agarase. AgaJ93 showed maximum activity at a pH of 7.0 and temperature of 35 ℃. Its activity increased by more than six times in the presence of Co2+ ions. The N-terminal sequence of AgaJ93 showed 82% homology with the heat-resistant endo-type β-agarase Aga2 of Cellulophaga sp. W5C. However, the biochemical properties of the two enzymes were different. Therefore, AgaJ93 is expected to be a novel agarose, different from the previously reported β-agarases.

A Study on the Antioxidant and MMPs Protein Expression Inhibitive Effect of Punica granatum L. Extract and Its Stabilization with Liquid Crystal Emulsion (석류추출물의 항산화와 MMPs 단백질 발현 억제 및 액정 유화물에서의 안정화에 관한 연구)

  • Roh, Jin-Sun;Yeom, Hyeon-Ji;Oh, Min-Jeong;Lee, Jin-Young
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.164-174
    • /
    • 2021
  • This study confirmed the potential of Punica granatum L. extract for functional activity verification and cosmetic development. The electron-donating ability of Punica granatum L. extract was shown 60.6% at a 1,000 ㎍/ml concentration. Its ABTS+ radical scavenging ability was shown 93.9% at a 1,000 ㎍/ml concentration. Additionally, the inhibitive effects of elastase and collagenase inhibition effects were measured as 30% and 47.2%, respectively, at a 1,000 ㎍/ml concentration. To determine the effect of Punica granatum L. extract on the proliferation of fibroblasts (CCD-986sk), cell viability was measured using a 3-[4,5-dimethyl-thiazol-2-yl]-2,5-diphenyl-tetrazoliumbromide (MTT) assay. As a result, survival rates of 130% or higher at a 500 ㎍/ml concentration or less were confirmed. According to the results of Western blot with Punica granatum L. extract, the expression inhibition rates of matrix metalloproteinase-1 (MMP-1), matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-3 (MMP-3) were decreased by 23.2%, 81.9%, and 69.2%, respectively, at a 100 ㎍/ml concentration. Based on the results above, O/W liquid crystal cream with 0.1% Punica granatum L. extract was prepared. The stabilities were tested at 4, 25, 45, and 50℃. By checking the pH, change over time, and stability by temperature, it was confirmed that all were stable for one month. Thus, Punica granatum L. extract shows potential as a natural material for cosmetics.

The Role of Glutamic Acid-producing Microorganisms in Rumen Microbial Ecosystems (반추위 미생물생태계에서의 글루탐산을 생성하는 미생물의 역할)

  • Mamuad, Lovelia L.;Lee, Sang-Suk
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.520-526
    • /
    • 2021
  • Microbial protein is one of the sources of protein in the rumen and can also be the source of glutamate production. Glutamic acid is used as fuel in the metabolic reaction in the body and the synthesis of all proteins for muscle and other cell components, and it is essential for proper immune function. Moreover, it is used as a surfactant, buffer, chelating agent, flavor enhancer, and culture medium, as well as in agriculture for such things as growth supplements. Glutamic acid is a substrate in the bioproduction of gamma-aminobutyric acid (GABA). This review provides insights into the role of glutamic acid and glutamic acid-producing microorganisms that contain the glutamate decarboxylase gene. These glutamic acid-producing microorganisms could be used in producing GABA, which has been known to regulate body temperature, increase DM intake and milk production, and improve milk composition. Most of these glutamic acid and GABA-producing microorganisms are lactic acid-producing bacteria (LAB), such as the Lactococcus, Lactobacillus, Enterococcus, and Streptococcus species. Through GABA synthesis, succinate can be produced. With the help of succinate dehydrogenase, propionate, and other metabolites can be produced from succinate. Furthermore, clostridia, such as Clostridium tetanomorphum and anaerobic micrococci, ferment glutamate and form acetate and butyrate during fermentation. Propionate and other metabolites can provide energy through conversion to blood glucose in the liver that is needed for the mammary system to produce lactose and live weight gain. Hence, health status and growth rates in ruminants can be improved through the use of these glutamic acid and/or GABA-producing microorganisms.

Preparation and Characterization of Reduced Graphene Oxide with Carboxyl Groups-Gold Nanorod Nanocomposite with Improved Photothermal Effect (향상된 광열 효과를 갖는 카르복실화된 환원 그래핀옥사이드-골드나노막대 나노복합체의 제조 및 특성 분석)

  • Lee, Seunghwa;Kim, So Yeon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.312-319
    • /
    • 2021
  • Photothermal therapy is a treatment that necrotizes selectively the abnormal cells, in particular cancer cells, which are more vulnerable to heat than normal cells, using the heat generated when irradiating light. In this study, we synthesized a reduced graphene oxide with carboxyl groups (CRGO)-gold nanorod (AuNR) nanocomposite for photothermal treatment. Graphene oxide (GO) was selectively reduced and exfoliated at high temperature to synthesize CRGO, and the length of AuNR was adjusted according to the amount of AgNO3, to synthesize AuNR with a strong absorption peak at 880 nm, as an ideal photothermal agent. It was determined through FT-IR, thermogravimetric and fluorescence analyses that more carboxyl groups were conjugated with CRGO over RGO. In addition, CRGO exhibited excellent stability in aqueous solutions compared to RGO due to the presence of carboxylic acid. The CRGO-AuNR nanocomposites fabricated by electrostatic interaction have an average size of ~317 nm with a narrow size distribution. It was confirmed that under radiation with a near-infrared 880 nm laser which has an excellent tissue transmittance, the photothermal effect of CRGO-AuNR nanocomposites was greater than that of AuNR due to the synergistic effect of the two photothermal agents, CRGO and AuNR. Furthermore, the results of cancer cell toxicity by photothermal effect revealed that CRGO-AuNR nanocomposites showed superb cytotoxic properties. Therefore, the CRGO-AuNR nanocomposites are expected to be applied to the field of anticancer photothermal therapy based on their stable dispersibility and improved photothermal effect.

A Study of Shelf Life about Li-ion Battery (리튬 2차 전지의 저장 수명에 관한 연구)

  • Kim, Dong-seong;Jin, Hong-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.339-345
    • /
    • 2020
  • In the field of defense, one-shot devices such as missiles are stored for a long period of time after they are manufactured, so it is essential to predict their storage life. A study was conducted to find the shelf life of a Li-ion battery used in one-shot devices. To do this, a Li-ion battery that has been used in weapon systems for more than 5 years was secured. A non-functional test was performed on the battery to check for external changes or failures. After the non-functional test, a discharge test was performed to measure the performance after storing it. Through the test, the performance was checked, including the initial charging voltage, discharge time, and battery temperature, and the trend of the change was identified. An F-test, One-way ANOVA, and regression analysis were performed to verify the aging, and the shelf life of the battery was estimated by an approximation formula that was derived through a regression analysis. As a result of the ANOVA, the p-value was less than the reference value of 0.05, and the performance of the battery decreased by more than 15% after a certain period of time. This change is assumed to result from the change in physical properties of the lithium polymer cell.