Browse > Article
http://dx.doi.org/10.5352/JLS.2021.31.5.520

The Role of Glutamic Acid-producing Microorganisms in Rumen Microbial Ecosystems  

Mamuad, Lovelia L. (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology)
Lee, Sang-Suk (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology)
Publication Information
Journal of Life Science / v.31, no.5, 2021 , pp. 520-526 More about this Journal
Abstract
Microbial protein is one of the sources of protein in the rumen and can also be the source of glutamate production. Glutamic acid is used as fuel in the metabolic reaction in the body and the synthesis of all proteins for muscle and other cell components, and it is essential for proper immune function. Moreover, it is used as a surfactant, buffer, chelating agent, flavor enhancer, and culture medium, as well as in agriculture for such things as growth supplements. Glutamic acid is a substrate in the bioproduction of gamma-aminobutyric acid (GABA). This review provides insights into the role of glutamic acid and glutamic acid-producing microorganisms that contain the glutamate decarboxylase gene. These glutamic acid-producing microorganisms could be used in producing GABA, which has been known to regulate body temperature, increase DM intake and milk production, and improve milk composition. Most of these glutamic acid and GABA-producing microorganisms are lactic acid-producing bacteria (LAB), such as the Lactococcus, Lactobacillus, Enterococcus, and Streptococcus species. Through GABA synthesis, succinate can be produced. With the help of succinate dehydrogenase, propionate, and other metabolites can be produced from succinate. Furthermore, clostridia, such as Clostridium tetanomorphum and anaerobic micrococci, ferment glutamate and form acetate and butyrate during fermentation. Propionate and other metabolites can provide energy through conversion to blood glucose in the liver that is needed for the mammary system to produce lactose and live weight gain. Hence, health status and growth rates in ruminants can be improved through the use of these glutamic acid and/or GABA-producing microorganisms.
Keywords
Gamma-aminobutyric acid; glutamate decarboxylase gene; glutamic acid; lactic acid bacteria; rumen;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Mustafa, A. K. and Gazi, S. K. 2014. Neurotransmitters; Overview. pp. 565-572. In: Encyclopedia of the Neurological Sciences.
2 Alexander, S. P. H. 2009. Glutamate. pp. 885-894. In: Encyclopedia of Neuroscience, Elsevier Ltd.
3 Alharbi, N. S., Kadaikunnan, S., Khaled, J. M., Almanaa, T. N., Innasimuthu, G. M., Rajoo, B., Alanzi, K. F. and Rajaram, S. K. 2020. Optimization of glutamic acid production by Corynebacterium glutamicum using response surface methodology. J. King Saud Univ. Sci. 32, 1403-1408.   DOI
4 Bajic, S. S., Djokic, J., Dinic, M., Veljovic, K., Golic, N., Mihajlovic, S. and Tolinacki, M. 2019. GABA-producing natural dairy isolate from artisanal zlatar cheese attenuates gut inflammation and strengthens gut epithelial barrier in vitro. Front. Microbiol. 10, 527.   DOI
5 Byrne, J. H., Heidelberger, R., Waxham, M. N. and Roberts, J. L. 2003. From Molecules to Networks,.
6 Cho, Y. R., Chang, J. Y. and Chang, H. C. 2007. Production of γ-aminobutyric acid (GABA) by Lactobacillus buchneri isolated from Kimchi and its neuroprotective effect on neuronal cells. J. Microbiol. Biotechnol. 17, 104-109.
7 Davies, J. A. 2007. Glutamic acid. pp. 1-3. In: xPharm: The Comprehensive Pharmacology Reference,.
8 Fenalti, G., Law, R. H. P., Buckle, A. M., Langendorf, C., Tuck, K., Rosado, C. J., Faux, N. G., Mahmood, K., Hampe, C. S., Banga, J. P., Wilce, M., Schmidberger, J., Rossjohn, J., El-Kabbani, O., Pike, R. N., Smith, A. I., Mackay, I. R., Rowley, M. J. and Whisstock, J. C. 2007. GABA production by glutamic acid decarboxylase is regulated by a dynamic catalytic loop. Nat. Struct. Mol. Biol. 14, 280-286.   DOI
9 Gopinath, V. and Nampoothiri, K. M. 2014. Corynebacterium glutamicum. pp. 504-517. In: Encyclopedia of Food Microbiology: Second Edition,.
10 Cui, Y., Miao, K., Niyaphorn, S. and Qu, X. 2020. Production of gamma-aminobutyric acid from lactic acid bacteria: A systematic review. Int. J. Mol. Sci. 21, 1-21.
11 Dhakal, R., Bajpai, V. K. and Baek, K. H. 2012. Production of GABA (γ-aminobutyric acid) by microorganisms: A review. Brazilian J. Microbiol. 43, 1230-1241.   DOI
12 Dutta, S., Ray, S. and Nagarajan, K. 2013. Glutamic acid as anticancer agent: An overview. Saudi Pharm. J. 21, 337-343.   DOI
13 Van Den Hende, C., Oyaert, W. and Bouckaert, J. H. 1963. Fermentation of glutamic acid by rumen bacteria. Res. Vet. Sci. 4, 367.   DOI
14 Forquin, M. P. and Weimer, B. C. 2014. Brevibacterium. pp. 324-330. In: Encyclopedia of Food Microbiology: Second Edition,.
15 Cox, O. H. and Lee, R. S. 2016. Behavioral Medical Epigenetics. pp. 127-146. In: Medical Epigenetics,.
16 Su, M. S., Schlicht, S. and Ganzle, M. G. 2011. Contribution of glutamate decarboxylase in Lactobacillus reuteri to acid resistance and persistence in sourdough fermentation. Microb. Cell Fact. 10, S8.   DOI
17 Hiraga, K., Ueno, Y. and Oda, K. 2008. Glutamate decarboxylase from Lactobacillus brevis: Activation by ammonium sulfate. Biosci. Biotechnol. Biochem. 72, 1-8.   DOI
18 Kimura, M., Hayakawa, K. and Sansawa, H. 2002. Involvement of γ-aminobutyric acid (GABA) B receptors in the hypotensive effect of systemically administered GABA in spontaneously hypertensive rats. Jpn. J. Pharmacol. 89, 388-394.   DOI
19 Ku, B. S., Mamuad, L. L., Kim, S. H., Jeong, C. D., Soriano, A. P., Lee, H. Il, Nam, K. C., Ha, J. K. and Lee, S. S. 2013. Effect of γ-aminobutyric acid (GABA) producing bacteria on in vitro rumen fermentation, biogenic amine production and anti-oxidation using corn meal as substrate. Asian-Australasian J. Anim. Sci. 26, 804-811.   DOI
20 Kung, L. and Rode, L. M. 1996. Amino acid metabolism in ruminants. Anim. Feed Sci. Technol. 59, 167-172.   DOI
21 Li, H. and Cao, Y. 2010. Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids 39, 1107-1116.   DOI
22 Gagne, F. 2014. Biochemical Ecotoxicology: Principles and Methods,.
23 Lim, H. S., Cha, I. T., Lee, H. and Seo, M. J. 2016. Optimization of γ-aminobutyric acid production by Enterococcus faecium JK29 isolated from a traditional fermented foods. Kor. J. Microbiol. Biotechnol. 44, 26-33.   DOI
24 Lyu, C., Zhao, W., Peng, C., Hu, S., Fang, H., Hua, Y., Yao, S., Huang, J. and Mei, L. 2018. Exploring the contributions of two glutamate decarboxylase isozymes in Lactobacillus brevis to acid resistance and γ-aminobutyric acid production. Microb. Cell Fact. 17, 180.   DOI
25 Kim, Y. H., Nagata, R., Ohkubo, A., Ohtani, N., Kushibiki, S., Ichijo, T. and Sato, S. 2018. Changes in ruminal and reticular pH and bacterial communities in Holstein cattle fed a high-grain diet. BMC Vet. Res. 14, 310.   DOI
26 Shelp, B. J., Bown, A. W. and McLean, M. D. 1999. Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci. 4, 446-452.   DOI
27 Neubeck, M., Prenner, E., Horvat, P., Bona, R., Hermetter, A. and Moser, A. 1993. Membrane fluidity in glutamic acid-producing bacteria Brevibacterium sp. ATCC 13869. Arch. Microbiol. 160, 101-107.   DOI
28 Okumoto, S., Funck, D., Trovato, M. and Forlani, G. 2016. Editorial: Amino acids of the glutamate family: Functions beyond primary metabolism. Front. Plant Sci. 7, 318.
29 Seal, C. J. and Reynolds, C. K. 1993. Nutritional implications of gastrointestinal and liver metabolism in ruminants. Nutr. Res. Rev. 6, 185-208.   DOI
30 Matsumoto, D., Takagi, M., Fushimi, Y., Okamoto, K., Kido, M., Ryuno, M., Imura, Y., Matsunaga, M., Koto, I., Shahada, F. and Deguchi, E. 2009. Effects of Gamma-Aminobutyric acid administration on health and growth rate of grouphoused Japanese black calves fed using an automatic controlled milk feeder. J. Vet. Med. Sci. 71, 651-656.   DOI
31 Shen, J. 2014. Chapter 2.4 - Glutamate. pp. 111-121. In: Magnetic Resonance Spectroscopy,.
32 Yogeswara, I. B. A., Maneerat, S. and Haltrich, D. 2020. Glutamate decarboxylase from lactic acid bacteria-a key enzyme in Gaba synthesis. Microorganisms 8, 1923.   DOI
33 Sok, M., Ouellet, D. R., Firkins, J. L., Pellerin, D. and Lapierre, H. 2017. Amino acid composition of rumen bacteria and protozoa in cattle. J. Dairy Sci. 100, 5241-5249.   DOI
34 Tavakoli, Y., Esmaeili, A. and Rabbani, M. 2015. Identification and molecular cloning of glutamate decarboxylase gene from Lactobacillus casei. Mol. Biol. Res. Commun. 4, 161-165.
35 Shyamkumar, R., Ganesh Moorthy, I. M., Ponmurugan, K. and Baskar, R. 2014. Production of L-glutamic acid with corynebacterium glutamicum (NCIM 2168) and pseudomonas reptilivora (NCIM 2598): A study on immobilization and reusability. Avicenna J. Med. Biotechnol. 6, 163-168.
36 Woraharn, S., Lailerd, N., Sivamaruthi, B. S., Wangcharoen, W., Sirisattha, S. and Chaiyasut, C. 2014. Screening and kinetics of glutaminase and glutamate decarboxylase producing lactic acid bacteria from fermented thai foods. Food Sci. Technol. 34, 793-799.   DOI
37 Yelamanchi, S. D., Jayaram, S., Thomas, J. K., Gundimeda, S., Khan, A. A., Singhal, A., Keshava Prasad, T. S., Pandey, A., Somani, B. L. and Gowda, H. 2016. A pathway map of glutamate metabolism. J. Cell Commun. Signal. 10, 69-75.   DOI
38 Young, V. R. and Ajami, A. M. 2000. Glutamate: An amino acid of particular distinction. J. Nutr. 130, 892S-900S.   DOI
39 Yu, T., Li, L., Zhao, Q., Wang, P. and Zuo, X. 2019. Complete genome sequence of bile-isolated Enterococcus avium strain 352. Gut Pathog. 11, 16.   DOI
40 Zareian, M., Ebrahimpour, A., Bakar, F. A., Mohamed, A. K. S., Forghani, B., Ab-Kadir, M. S. B. and Saari, N. 2012. A glutamic acid-producing lactic acid bacteria isolated from malaysian fermented foods. Int. J. Mol. Sci. 13, 5482-5497.   DOI
41 Zareian, M., Ebrahimpour, A., Sabo Mohamed, A. K. and Saari, N. 2013. Modeling of glutamic acid production by Lactobacillus plantarum MNZ. Electron. J. Biotechnol. 16, http://dx.doi.org/10.2225.