• Title/Summary/Keyword: Cell temperature

Search Result 4,481, Processing Time 0.031 seconds

Cloning and Expression of a cDNA AAPT3 Encoding Aminoalcoholphosphotransferase Isoform from Chinese Cabbage

  • Kim, Kwang-Soo;Park, Jong-Ho;Cho, Sung-Ho
    • Animal cells and systems
    • /
    • v.8 no.2
    • /
    • pp.105-109
    • /
    • 2004
  • Aminoalcoholphosphotransferase catalyzes the synthesis of phosphatidylcholine and phosphatidylethanolamine from diacylglycerol plus a CDP-aminoalcohol such as CDP-choline or CDP-ethanolamine. Previously we suggested the presence of possible isoforms of this enzyme from Chinese cabbage roots and now report the cDNA cloning and expression analysis of AAPT3 encoding a third isoform of aminoalcoholphosphotransferase (AAPT3). AAPT3 contains an open reading frame of 1,176 bp coding for a protein of 392 amino acids. It shares 96 and 95% identity with Chinese cabbage AAPT1 and AAPT2, respectively, at the deduced amino acid level. The results from reverse transcriptase-polymerase chain reaction analysis indicate that expression of AAPT3 is up-regulated by low temperature as well as AAPT1 and AAPT2.

Computer Simulation of Liquid-Fuelled Combustor in Hot Vitiated-Air Stream (고온.저산소 농도영역중의 분무연소해석)

  • 김태한;최병륜
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3187-3195
    • /
    • 1993
  • Combustion of liquid-fuelled combustion in a high-temperature vitiated-air stream was studied. The mathematical formulation comprise the application of Eulerian conservation equation to the gas phase and Lagrangian equation of droplet motion. The latter is coupled with a droplet-tracking technique (PSI-CELL Model) which regard the droplet phase as a source of mass, momentum, and energy to the gaseous phase. Reaction rate is determined by taking into account the Arrhenius reaction rate based on a single-step reaction mechanism. The calculated profiles show somewhat uncertainess at the upstream, but bases data for designing the combustor followed by 2-phase flow were obtained.

Analysis on Electrical Characteristics of PV Cells considering Ambient Temperature and Irradiance Level (주변온도와 일사량을 고려한 PV Cell의 전기적 특성 분석)

  • Park, Hyeonah;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.6
    • /
    • pp.481-485
    • /
    • 2016
  • When analyzing economic feasibility for installing a PV generation plant at a certain location, the prediction of possible annual power production at the site using the target PV panels should be conducted on the basis of the local weather data provided by a local weather forecasting office. In addition, the prediction of PV generating power under certain weather conditions is useful for fault diagnosis and performance evaluation of PV generation plants during actual operation. This study analyzes PV cell characteristics according to a variety of weather conditions, including ambient temperature and irradiance level. From the analysis and simulation results, this work establishes a proper model that can predict the output characteristics of PV cells under changes in weather conditions.

A Study On The Maximum Power Point Tracking Simulation of Photovoltaic Solar Cell (PV용 Solar cell의 MPPT 시뮬레이션에 관한 연구)

  • Jeong, B.H.;Lee, K.Y.;Cho, G.B.;Baek, H.L.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05c
    • /
    • pp.17-20
    • /
    • 2004
  • PV model is presented based on the shockley diode equation. The simple model has a photo-current source, an single diode junction and a series resistance and includes temperature dependences. An accurate PV module electrical model is presented, matching with boost converter MPPT strategy and demosntarted in Matlab for a typical general purpose solar cell. Given solar insolation and temperature, the model returns current vector and MPP.

  • PDF

Use of homogenization theory to build a beam element with thermo-mechanical microscale properties

  • Schrefler, B.A.;Lefik, M.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.6
    • /
    • pp.613-630
    • /
    • 1996
  • The homogenization method is used to develop a beam element in space for thermo-mechanical analysis of unidirectional composites. Local stress and temperature field in the microscale are described using the function of homogenization. The global (macroscopic) behaviour of the structure is supposed to be that of a beam. Beam-type kinematical hypotheses (including independent shear rotations) are hence applied and superposed on the microdescription. A macroscopic stiffness matrix for such a beam element is then developed which contains the microscale properties of the single cell of periodicity. The presented model enables us to analyse without too much computational effort complicated composite structures such as e.g. toroidal coils of a fusion reactor. We need only a FE mesh sufficiently fine for a correct description of the local geometry of a single cell and a few of the newly developed elements for the description of the global behaviour. An unsmearing procedure gives the stress and temperature field in the different materials of a single cell.

A Study on the Oxide Semiconductor $ITO_{(n)}/Si_{(p)}$ Solar Cell(II) (산화물 반도체 $ITO_{(n)}/Si_{(p)}$ 태양전지에 관한 연구(II))

  • Kim, Y.W.;Jo, Y.H.;Son, J.H.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.184-186
    • /
    • 2002
  • $ITO_{(n)}/Si_{(p)}$ solar cell was fabricated by vaccum deposition method under the resistance heating with substrate temperature kept about 200[$^{\circ}C$] and than their properties are investigated. The cell charateristics can be improved by annealing but are deteriorated at temperature above 650[$^{\circ}C$] for longer than 15[min].

  • PDF

Electrical Properties of ITO/TiO$_2$/Se Solar Cell (ITO/TiO$_2$/Se 태양전지의 전기적특성에 관한 연구)

  • 문수경;박현빈;구할본;김태성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.05a
    • /
    • pp.114-116
    • /
    • 1992
  • ITO/TiO$_2$/Se solar cell were fabricated by vacuum deposition method, the Se and TiO$_2$were deposited on the ITO/Glass. Prior to the electrical properties of film, the provide Te between the ITO and the Se film were deposited by substrate temperature 20[$^{\circ}C$] and evaporation time 15[min], next time TiO$_2$ were treated by rf-magnetron sputtering in substrate temperature 250[$^{\circ}C$]. Fabricated ITO/TiO$_2$/Se solar cell were as follows : Open Voltage V$\_$oc/=848[mV], Short Circuit Current I$\_$sc/=10.79[mA/$\textrm{cm}^2$]. Fill Factor FF=0.518, energy conversion efficiency η=4.74[%] under the illumination of AM 1.

  • PDF

Application Possibility of Mono-Crystalline Silicon Solar Cell for Photovoltaic Concentrating System (단결정 실리콘 태양전지의 집광형 시스템으로의 적용 가능성)

  • Kang, Kyung-Chan;Kang, Gi-Hwan;Yu, Gwon-Jong;Huh, Chang-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.22-23
    • /
    • 2007
  • We tried to find the possibility of mono-crystalline silicon solar cell for photovoltaic concentrating system which is major cost portion for PV system using fresnel lens. With solar simulator and I-V curve tracer, we analyzed maximum output characteristics and measured the temperature of concentrated area using infrared camera. Because of temperature increase, there was no merit when concentrating. But at low radiant power, it showed more efficient operation. The combination of heat-sink technology and tracking system to our concentrating PV system would give better performance results.

  • PDF

Microstructure Evolution of 15Cr ODS Steel by a Simple Torsion Test (단순 전단변형에 의한 15Cr 산화물 분산강화 강의 미세조직 변화)

  • Jin, Hyun Ju;Kang, Suk Hoon;Kim, Tae Kyu
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.271-276
    • /
    • 2014
  • 15Cr-1Mo base oxide dispersion strengthened (ODS) steel which is considered to be as a promising candidate for high- temperature components in nuclear fusion and fission systems because of its excellent high temperature strength, corrosion and radiation resistance was fabricated by using mechanical alloying, hot isostatic pressing and hot rolling. Torsion tests were performed at room temperature, leading to two different shear strain routes in the forward and reverse directions. In this study, microstructure evolution of the ODS steel during simple shearing was investigated. Fine grained microstructure and a cell structure of dislocation with low angle boundaries were characterized with shear strain in the shear deformed region by electron backscattered diffraction (EBSD). Grain refinement with shear strain resulted in an increase in hardness. After the forward-reverse torsion, the hardness value was measured to be higher than that of the forward torsion only with an identical shear strain amount, suggesting that new dislocation cell structures inside the grain were generated, thus resulting in a larger strengthening of the steel.

Ce0.8Sm0.2O2 Sol-gel Modification on La0.8Sr0.2Mn0.8Cu0.2O3 Cathode for Intermediate Temperature Solid Oxide Fuel Cell

  • Lee, Seung Jin;Kang, Choon-Hyoung;Chung, Chang-Bock;Yun, Jeong Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.77-82
    • /
    • 2015
  • To increase the performance of solid oxide fuel cell operating at intermediate temperature ($600^{\circ}C{\sim}800^{\circ}C$), $Sm_{0.2}Ce_{0.8}O_2$ (SDC) thin layer was applied to the $La_{0.8}Sr_{0.2}Mn_{0.8}Cu_{0.2}O_3$ (LSMCu) cathode by sol-gel coating method. The SDC was employed as a diffusion barrier layer on the yttria-stabilized zirconia(YSZ) to prevent the interlayer by-product formation of $SrZrO_3$ or $La_2Zr_2O_7$. The by-products were hardly formed at the electrolyte-cathode interlayer resulting to reduce the cathode polarization resistance. Moreover, SDC thin film was coated on the cathode pore wall surface to extend the triple phase boundary (TPB) area.