• Title/Summary/Keyword: Cell renewal

Search Result 143, Processing Time 0.027 seconds

Development of a Three-dimensional Hydrogel System for the Maintenance of Porcine Spermatogonial Stem Cell Self-renewal

  • Park, Ji Eun;Park, Min Hee;Kim, Min Seong;Yun, Jung Im;Choi, Jung Hoon;Lee, Eunsong;Lee, Seung Tae
    • Journal of Embryo Transfer
    • /
    • v.32 no.4
    • /
    • pp.343-351
    • /
    • 2017
  • Porcine spermatogonial stem cells (SSCs) prefer three-dimensional (3D) culture systems to 2D ones for the maintenance of self-renewal. Of the many 3D culture systems, agar-based hydrogels are candidates for supporting porcine SSC self-renewal, and there are various types of agar powder that can be used. In this study, we sought to identify an agar-based 3D hydrogel system that exhibited strong efficacy in the maintenance of porcine SSC self-renewal. First, 3D hydrogels with different mechanics were prepared with various concentrations of Bacto agar, lysogeny broth (LB) agar, and agarose powder, and the 3D hydrogel with the strongest alkaline phosphatase (AP) activity and greatest increase in colony size was identified for the different types of agar powder. Second, among the porcine SSCs cultured in the different 3D hydrogels, we analyzed the colony formation, morphology, and size; AP activity; and transcription and translation of porcine SSC-related genes, and these were compared to determine the optimal 3D hydrogel system for the maintenance of porcine SSC self-renewal. We found that 0.6% (w/v) Bacto agar-, 1% (w/v) LB agar-, and 0.2% (w/v) agarose-based 3D hydrogels showed the strongest maintenance of AP activity and the most pronounced increase in colony size in the culture of porcine SSCs. Moreover, among these hydrogels, the strongest transcription and translation of porcine SSC-related genes and largest colony size were detected in porcine SSCs cultured in the 0.2% (w/v) agarose-based 3D hydrogel, whereas there were no significant differences in colony formation and morphology. These results demonstrate that the 0.2% (w/v) agarose-based 3D hydrogel can be effectively used for the maintenance of porcine SSC self-renewal.

The expression and functional roles of microRNAs in stem cell differentiation

  • Shim, Jiwon;Nam, Jin-Wu
    • BMB Reports
    • /
    • v.49 no.1
    • /
    • pp.3-10
    • /
    • 2016
  • microRNAs (miRNAs) are key regulators of cell state transition and retention during stem cell proliferation and differentiation by post-transcriptionally downregulating hundreds of conserved target genes via seed-pairing in their 3' untranslated region. In embryonic and adult stem cells, dozens of miRNAs that elaborately control stem cell processes by modulating the transcriptomic context therein have been identified. Some miRNAs accelerate the change of cell state into progenitor cell lineages—such as myoblast, myeloid or lymphoid progenitors, and neuro precursor stem cells—and other miRNAs decelerate the change but induce proliferative activity, resulting in cell state retention. This cell state choice can be controlled by endogenously or exogenously changing miRNA levels or by including or excluding target sites. This control of miRNA-mediated gene regulation could improve our understanding of stem cell biology and facilitate their development as therapeutic tools. [BMB Reports 2016; 49(1): 3-10]

The Kleisin Subunits of Cohesin Are Involved in the Fate Determination of Embryonic Stem Cells

  • Koh, Young Eun;Choi, Eui-Hwan;Kim, Jung-Woong;Kim, Keun Pil
    • Molecules and Cells
    • /
    • v.45 no.11
    • /
    • pp.820-832
    • /
    • 2022
  • As a potential candidate to generate an everlasting cell source to treat various diseases, embryonic stem cells are regarded as a promising therapeutic tool in the regenerative medicine field. Cohesin, a multi-functional complex that controls various cellular activities, plays roles not only in organizing chromosome dynamics but also in controlling transcriptional activities related to self-renewal and differentiation of stem cells. Here, we report a novel role of the α-kleisin subunits of cohesin (RAD21 and REC8) in the maintenance of the balance between these two stem-cell processes. By knocking down REC8, RAD21, or the non-kleisin cohesin subunit SMC3 in mouse embryonic stem cells, we show that reduction in cohesin level impairs their self-renewal. Interestingly, the transcriptomic analysis revealed that knocking down each cohesin subunit enables the differentiation of embryonic stem cells into specific lineages. Specifically, embryonic stem cells in which cohesin subunit RAD21 were knocked down differentiated into cells expressing neural alongside germline lineage markers. Thus, we conclude that cohesin appears to control the fate determination of embryonic stem cells.

ATM Traffic Modeling with Markov Renewal Process and Performance Analysis (마코프 재생과정을 이용한 ATM 트랙픽 모델링 및 성능분석)

  • Jeong, Seok-Yun;Hur, Sun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.24 no.3
    • /
    • pp.83-91
    • /
    • 1999
  • In order to build and manage an ATM network effectively under several types of control methods, it is necessary to estimate the performance of the equipments in various viewpoints, especially of ATM multiplexer. As for the method to model the input stream into the ATM multiplexer, many researches have been done to characterize it by, such as, fluid flow, MMPP(Markov Modulated Poisson Process), or MMDP (Markov Modulated Deterministic Process). We introduce an MRP(Markov Renewal Process) to model the input stream which has proper structure to represent the burst traffic with high correlation. In this paper, we build a model for aggregated heterogeneous ON-OFF sources of ATM traffic by MRP. We make discrete time MR/D/1/B queueing system, whose input process is the superposed MRP and present a performance analysis by finding CLP(Cell Loss Probability). A simulation is done to validate our algorithm.

  • PDF

Transcriptional Properties of the BMP, $TGF-\beta$, RTK, Wnt, Hh, Notch, and JAK/STAT Signaling Molecules in Mouse Embryonic Stem Cells

  • Rho Jeung-Yon;Bae Gab-Yong;Chae Jung-Il;Yu Kweon;Koo Deog-Bon;Lee Kyung-Kwang;Han Yong-Mahn
    • Reproductive and Developmental Biology
    • /
    • v.30 no.2
    • /
    • pp.143-156
    • /
    • 2006
  • Major characteristics of embryonic stem cells (ESCs) are sustaining of sternness and pluripotency by self-renewal. In this report, transcriptional profiles of the molecules in the developmentally important signaling pathways including Wnt, BMP4, $TGF-\beta$, RTK, Hh, Notch, and JAK/STAT signaling pathways were investigated to understand the self-renewal of mouse ESCs (mESCs), J1 line, and compared with the NIH3T3 cell line and mouse embryonic fibroblast (MEF) cells as controls. In the Wnt signaling pathway, the expression of Wnt3 was seen widely in mESCs, suggesting that the ligand may be an important regulator for self-renewal in mESCs. In the Hh signaling pathway, the expression of Gli and N-myc were observed extensively in mESCs, whereas the expression levels of in a Shh was low, suggesting that intracellular molecules may be essential for the self-renewal of mESCs. IGF-I, IGF-II, IGF-IR and IGF-IIR of RTK signaling showed a lower expression in mESCs, these molecules related to embryo development may be restrained in mESCs. The expression levels of the Delta and HESS in Notch signaling were enriched in mESCs. The expression of the molecules related to BMP and JAK-STAT signaling pathways were similar or at a slightly lower level in mESCs compared to those in MEF and NIH3T3 cells. It is suggested that the observed differences in gene expression profiles among the signaling pathways may contribute to the self-renewal and differentiation of mESCs in a signaling-specific manner.

DDX53 Promotes Cancer Stem Cell-Like Properties and Autophagy

  • Kim, Hyuna;Kim, Youngmi;Jeoung, Dooil
    • Molecules and Cells
    • /
    • v.40 no.1
    • /
    • pp.54-65
    • /
    • 2017
  • Although cancer/testis antigen DDX53 confers anti-cancer drug-resistance, the effect of DDX53 on cancer stem cell-like properties and autophagy remains unknown. MDA-MB-231 ($CD133^+$) cells showed higher expression of DDX53, SOX-2, NANOG and MDR1 than MDA-MB-231 ($CD133^-$). DDX53 increased in vitro self-renewal activity of MCF-7 while decreasing expression of DDX53 by siRNA lowered in vitro self-renewal activity of MDA-MB-231. DDX53 showed an interaction with EGFR and binding to the promoter sequences of EGFR. DDX53 induced resistance to anti-cancer drugs in MCF-7 cells while decreased expression of DDX53 by siRNA increased the sensitivity of MDA-MB-231 to anti-cancer drugs. Negative regulators of DDX53, such as miR-200b and miR-217, increased the sensitivity of MDA-MB-231 to anti-cancer drugs. MDA-MB-231 showed higher expression of autophagy marker proteins such as ATG-5, $pBeclin1^{Ser15}$ and LC-3I/II compared with MCF-7. DDX53 regulated the expression of marker proteins of autophagy in MCF-7 and MDA-MB-231 cells. miR-200b and miR-217 negatively regulated the expression of autophagy marker proteins. Chromatin immunoprecipitation assays showed the direct regulation of ATG-5. The decreased expression of ATG-5 by siRNA increased the sensitivity to anti-cancer drugs in MDA-MB-231 cells. In conclusion, DDX53 promotes stem cell-like properties, autophagy, and confers resistance to anti-cancer drugs in breast cancer cells.

Study on Renal Anemia - A Double Tracer Study on Iron Metabolism and Red Cell Life Span in Chronic Renal Diseases using Radioactive Iron ($^{59}Fe$) and Chromium($^{51}Cr$) - (신성빈혈(腎性貧血)에 관(關)한 연구(硏究) - 만성신질환(慢性腎疾患)의 철대사(鐵代謝) 및 적혈구수명(赤血球壽命)에 관(關)하여 -)

  • Jung, Kyung-Tae;Lee, Mun-Ho
    • The Korean Journal of Nuclear Medicine
    • /
    • v.2 no.1
    • /
    • pp.27-41
    • /
    • 1968
  • The ferrokinetics and red cell life spans of the patients with chronic glomerulonephritis were investigated by the double tracing method using radioactive iron ($^{59}Fe$) and chromium ($^{51}Cr$). According to the serum NPN levels, the patients were subdivided into 3 groups: Group 1. 6 patients, had the levels below 40 mg/dl Group 2. 6 patients, had the levels between 41 mg/dl to 80 mg/dl Group 3. 10 patients, had the levels above 80 mg/dl The results were as follows: 1) Red blood cell-, hematocrit- and hemoglobin values were moderately reduced in patients with normal serum NPN levels, while markedly reduced in patients with elevated serum NPN levels. 2) The plasma volume was increased, while the red cell volume was decreased in patients with elevated serum NPN levels, hence, total blood volume was unchanged. 3) The serum iron level was slightly reduced h patients of groups 1 and 2, while was within the normal ranges in patients of group 3. 4) i) In patients with normal serum NPN levels, the plasma iron disappearance rate, red cell iron utilization rate, red cell iron turnover rate, daily red cell iron renewal rate, circulating red cell iron and red cell iron concentration were within the normal ranges, while the plasma iron turnover rate was slightly reduced. ii) In patients with elevated serum NPN levels, the plasma iron disappearance rate was delayed, while the plasma iron turnover rate was within the normal ranges. The red cell iron utilization rate, red cell iron turnover rate and circulating red cell iron were decreased and the period in which the red cell iron utilization rate reachd its peak was delayed in Group 3 patients. The daily red cell iron renewal rate and the red cell iron concentration were unchanged. iii) The mean red cell life span was within the normal ranges in patients with normal serum NPN levels, while was shortened in patients with elevated serum NPN levels.

  • PDF

Comparison of Efficiency of Self-renewal and Differentiation Potential in Tendon-derived Mesenchymal Stem Cells Isolated by Magnetic-activated Cell Sorting Method or Colony Picking Method (자기 활성 세포 분리법과 군체 분리법으로 분리된 건 줄기세포의 자가 재생 능력 및 분화능 효율 비교)

  • Lee, Moses;Choi, Yoorim;Yoon, Dong Suk;Lee, Jin Woo;Yoon, Gil Sung;Choi, Woo Jin;Han, Seung Hwan
    • Journal of Korean Foot and Ankle Society
    • /
    • v.18 no.3
    • /
    • pp.100-107
    • /
    • 2014
  • Purpose: The purpose of this study is to evaluate the efficacy of mesenchymal stem cell (MSC) isolation by the magnetic-activated cell sorting (MACS) method in tendon tissue-derived cells compared to the colony picking method for isolation of MSCs by picking colony-forming cells. Materials and Methods: Human tendon-derived cells were isolated by enzyme digestion using normal tendon tissues from three donors. We used the magnetic kit and well-known MSC markers (CD90 or CD105) to isolate MSCs in tendon-derived cells using MACS. Cloning cylinders were used to isolate colony-forming cells having MSC characteristics in tendon-derived cells. Colony-forming unit-fibroblast (CFU-F) assay was used to evaluate the self-renewal capacity of cells isolated using the colony picking method or MACS. For comparison of differentiation potentials into osteogenic or adipogenic lineage between two groups, alizarin red S and oil red O staining were performed at 14 days after induction of differentiation in vitro. Results: Flow cytometry results showed that early passage tendon-derived cells expressed CD44 in 99.13%, CD90 in 56.51%, and CD105 in 86.19%. In the CFU-F assay, CD90+ or CD105+ cells isolated with MACS showed larger colony formation in size than cells isolated using the colony picking method. We also observed that CD90+ or CD105+ cells were constantly differentiated into both osteogenic and adipogenic lineages in cells from all donors, whereas cells isolated using the colony picking method were heterogeneous in differentiation potentials to the osteogenic and adipogenic lineages. Conclusion: CD90+ or CD105+ cells isolated using MACS showed superior MSC characteristics in the self-renewal and multi-differentiation capacities compared with cells isolated using the colony picking method.

G protein-coupled receptors in stem cell maintenance and somatic reprogramming to pluripotent or cancer stem cells

  • Choi, Hye Yeon;Saha, Subbroto Kumar;Kim, Kyeongseok;Kim, Sangsu;Yang, Gwang-Mo;Kim, BongWoo;Kim, Jin-Hoi;Cho, Ssang-Goo
    • BMB Reports
    • /
    • v.48 no.2
    • /
    • pp.68-80
    • /
    • 2015
  • G protein-coupled receptors (GPCRs) are a large class of transmembrane receptors categorized into five distinct families: rhodopsin, secretin, adhesion, glutamate, and frizzled. They bind and regulate 80% of all hormones and account for 20-50% of the pharmaceuticals currently on the market. Hundreds of GPCRs integrate and coordinate the functions of individual cells, mediating signaling between various organs. GPCRs are crucial players in tumor progression, adipogenesis, and inflammation. Several studies have also confirmed their central roles in embryonic development and stem cell maintenance. Recently, GPCRs have emerged as key players in the regulation of cell survival, proliferation, migration, and self-renewal in pluripotent (PSCs) and cancer stem cells (CSCs). Our study and other reports have revealed that the expression of many GPCRs is modulated during the generation of induced PSCs (iPSCs) or CSCs as well as during CSC sphere formation. These GPCRs may have crucial roles in the regulation of self-renewal and other biological properties of iPSCs and CSCs. This review addresses the current understanding of the role of GPCRs in stem cell maintenance and somatic reprogramming to PSCs or CSCs.

The Role of Hippo Pathway in Cancer Stem Cell Biology

  • Park, Jae Hyung;Shin, Ji Eun;Park, Hyun Woo
    • Molecules and Cells
    • /
    • v.41 no.2
    • /
    • pp.83-92
    • /
    • 2018
  • The biological significance and deregulation of the Hippo pathway during organ growth and tumorigenesis have received a surge of interest in the past decade. The Hippo pathway core kinases, MST1/2 and LATS1/2, are tumor suppressors that inhibit the oncogenic nuclear function of YAP/TAZ and TEAD. In addition to earlier studies that highlight the role of Hippo pathway in organ size control, cell proliferation, and tumor development, recent evidence demonstrates its critical role in cancer stem cell biology, including EMT, drug resistance, and self-renewal. Here we provide a brief overview of the regulatory mechanisms of the Hippo pathway, its role in cancer stem cell biology, and promising therapeutic interventions.