DOI QR코드

DOI QR Code

The Role of Hippo Pathway in Cancer Stem Cell Biology

  • Park, Jae Hyung (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University) ;
  • Shin, Ji Eun (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University) ;
  • Park, Hyun Woo (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University)
  • 투고 : 2017.09.28
  • 심사 : 2018.01.08
  • 발행 : 2018.02.28

초록

The biological significance and deregulation of the Hippo pathway during organ growth and tumorigenesis have received a surge of interest in the past decade. The Hippo pathway core kinases, MST1/2 and LATS1/2, are tumor suppressors that inhibit the oncogenic nuclear function of YAP/TAZ and TEAD. In addition to earlier studies that highlight the role of Hippo pathway in organ size control, cell proliferation, and tumor development, recent evidence demonstrates its critical role in cancer stem cell biology, including EMT, drug resistance, and self-renewal. Here we provide a brief overview of the regulatory mechanisms of the Hippo pathway, its role in cancer stem cell biology, and promising therapeutic interventions.

키워드

참고문헌

  1. Anastas, J.N., Kulikauskas, R.M., Tamir, T., Rizos, H., Long, G.V., von Euw, E.M., Yang, P.T., Chen, H.W., Haydu, L., Toroni, R.A., et al. (2014). WNT5A enhances resistance of melanoma cells to targeted BRAF inhibitors. J. Clin. Invest. 124, 2877-2890. https://doi.org/10.1172/JCI70156
  2. Aragona, M., Panciera, T., Manfrin, A., Giulitti, S., Michielin, F., Elvassore, N., Dupont, S., and Piccolo, S. (2013). A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154, 1047-1059. https://doi.org/10.1016/j.cell.2013.07.042
  3. Azzolin, L., Zanconato, F., Bresolin, S., Forcato, M., Basso, G., Bicciato, S., Cordenonsi, M., and Piccolo, S. (2012). Role of TAZ as Mediator of Wnt Signaling. Cell 151, 1443-1456. https://doi.org/10.1016/j.cell.2012.11.027
  4. Azzolin, L., Panciera, T., Soligo, S., Enzo, E., Bicciato, S., Dupont, S., Bresolin, S., Frasson, C., Basso, G., Guzzardo, V., et al. (2014). YAP/TAZ incorporation in the beta-catenin destruction complex orchestrates the Wnt response. Cell 158, 157-170. https://doi.org/10.1016/j.cell.2014.06.013
  5. Barry, E.R., Morikawa, T., Butler, B.L., Shrestha, K., de la Rosa, R., Yan, K.S., Fuchs, C.S., Magness, S.T., Smits, R., Ogino, S., et al. (2013). Restriction of intestinal stem cell expansion and the regenerative response by YAP. Nature 493, 106-110.
  6. Bartucci, M., Dattilo, R., Moriconi, C., Pagliuca, A., Mottolese, M., Federici, G., Di Benedetto, A., Todaro, M., Stassi, G., Sperati, F., et al. (2015). TAZ is required for metastatic activity and chemoresistance of breast cancer stem cells. Oncogene 34, 681-690. https://doi.org/10.1038/onc.2014.5
  7. Basu-Roy, U., Bayin, N.S., Rattanakorn, K., Han, E., Placantonakis, D.G., Mansukhani, A., and Basilico, C. (2015). Sox2 antagonizes the Hippo pathway to maintain stemness in cancer cells. Nat. Commun. 6, 6411. https://doi.org/10.1038/ncomms7411
  8. Benham-Pyle, B.W., Pruitt, B.L., and Nelson, W.J. (2015). Cell adhesion. Mechanical strain induces E-cadherin-dependent Yap1 and beta-catenin activation to drive cell cycle entry. Science 348, 1024-1027. https://doi.org/10.1126/science.aaa4559
  9. Busser, B., Sancey, L., Josserand, V., Niang, C., Favrot, M.C., Coll, J.L., and Hurbin, A. (2010). Amphiregulin Promotes BAX Inhibition and Resistance to Gefitinib in Non-small-cell Lung Cancers. Mol. Ther. 18, 528-535. https://doi.org/10.1038/mt.2009.226
  10. Cai, J., Maitra, A., Anders, R.A., Taketo, M.M., and Pan, D. (2015). beta-Catenin destruction complex-independent regulation of Hippo-YAP signaling by APC in intestinal tumorigenesis. Genes Dev. 29, 1493-1506. https://doi.org/10.1101/gad.264515.115
  11. Chan, P., Han, X., Zheng, B.H., Deran, M., Yu, J.Z., Jarugumilli, G.K., Deng, H., Pan, D.J., Luo, X.L., and Wu, X. (2016). Autopalmitoylation of TEAD proteins regulates transcriptional output of the Hippo pathway. Nat. Chem. Biol 12, 282-+. https://doi.org/10.1038/nchembio.2036
  12. Chen, H.H., Mullett, S.J., and Stewart, A.F. (2004). Vgl-4, a novel member of the vestigial-like family of transcription cofactors, regulates alpha1-adrenergic activation of gene expression in cardiac myocytes. J. Biol. Chem. 279, 30800-30806. https://doi.org/10.1074/jbc.M400154200
  13. Cheng, H.Y., Zhang, Z.F., Rodriguez-Barrueco, R., Borczuk, A., Liu, H.J., Yu, J.Y., Silva, J.M., Cheng, S.K., Perez-Soler, R., and Halmos, B. (2016). Functional genomics screen identifies YAP1 as a key determinant to enhance treatment sensitivity in lung cancer cells. Oncotarget 7, 28976-28988.
  14. Ciamporcero, E., Shen, H., Ramakrishnan, S., Ku, S.Y., Chintala, S., Shen, L., Adelaiye, R., Miles, K.M., Ullio, C., Pizzimenti, S., et al. (2016). YAP activation protects urothelial cell carcinoma from treatment-induced DNA damage. Oncogene 35, 1541-1553. https://doi.org/10.1038/onc.2015.219
  15. Cizkova, M., Cizeron-Clairac, G., Vacher, S., Susini, A., Andrieu, C., Lidereau, R., and Bieche, I. (2010). Gene expression profiling reveals new aspects of PIK3CA mutation in ERalpha-positive breast cancer: major implication of the Wnt signaling pathway. Plos One 5.
  16. Cordenonsi, M., Zanconato, F., Azzolin, L., Forcato, M., Rosato, A., Frasson, C., Inui, M., Montagner, M., Parenti, A.R., Poletti, A., et al. (2011). The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 147, 759-772. https://doi.org/10.1016/j.cell.2011.09.048
  17. Dasari, V.R., Mazack, V., Feng, W., Nash, J., Carey, D.J., and Gogoi, R. (2017). Verteporfin exhibits YAP-independent anti-proliferative and cytotoxic effects in endometrial cancer cells. Oncotarget 8, 28628-28640.
  18. DeRan M, Yang J, Shen CH, Peters EC, Fitamant J, Chan P, Hsieh M, Zhu S, Asara JM, Zheng B et al. (2014). Energy stress regulates hippo-YAP signaling involving AMPK-mediated regulation of angiomotinlike 1 protein. Cell Rep 9, 495-503. https://doi.org/10.1016/j.celrep.2014.09.036
  19. Dong, J., Feldmann, G., Huang, J., Wu, S., Zhang, N., Comerford, S.A., Gayyed, M.F., Anders, R.A., Maitra, A., and Pan, D. (2007). Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130, 1120-1133. https://doi.org/10.1016/j.cell.2007.07.019
  20. Dupont, S., Morsut, L., Aragona, M., Enzo, E., Giulitti, S., Cordenonsi, M., Zanconato, F., Le Digabel, J., Forcato, M., Bicciato, S., et al. (2011). Role of YAP/TAZ in mechanotransduction. Nature 474, 179-U212. https://doi.org/10.1038/nature10137
  21. Elbediwy, A., Vincent-Mistiaen, Z.I., Spencer-Dene, B., Stone, R.K., Boeing, S., Wculek, S.K., Cordero, J., Tan, E.H., Ridgway, R., Brunton, V.G., et al. (2016). Integrin signalling regulates YAP and TAZ to control skin homeostasis. Development 143, 1674-1687. https://doi.org/10.1242/dev.133728
  22. Enzo, E,, Santinon, G,, Pocaterra, A,, Aragona, M,, Bresolin, S,, Forcato, M,, Grifoni, D,, Pession, A,, Zanconato, F,, Guzzo, G., et al. (2015). Aerobic glycolysis tunes YAP/TAZ transcriptional activity. EMBO J. 34, 1349-1370. https://doi.org/10.15252/embj.201490379
  23. Feng, X.D., Degese, M.S., Iglesias-Bartolome, R., Vaque, J.P., Molinolo, A.A., Rodrigues, M., Zaidi, M.R., Ksander, B.R., Merlino, G., Sodhi, A., et al. (2014). Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell 25, 831-845. https://doi.org/10.1016/j.ccr.2014.04.016
  24. Feng, X., Liu, P., Zhou, X., Li, M.T., Li, F.L., Wang, Z., Meng, Z.P., Sun, Y.P., Yu, Y, Xiong, Y., et al. (2016). Thromboxane A2 activates YAP/TAZ protein to induce vascular smooth muscle cell proliferation and migration. J. Biol. Chem. 291, 18947-18958. https://doi.org/10.1074/jbc.M116.739722
  25. Fernandez, L.A., Squatrito, M., Northcott, P., Awan, A., Holland, E.C., Taylor, M.D., Nahle, Z., and Kenney, A.M. (2012). Oncogenic YAP promotes radioresistance and genomic instability in medulloblastoma through IGF2-mediated Akt activation. Oncogene 31, 1923-1937. https://doi.org/10.1038/onc.2011.379
  26. Ganem, N.J., Cornils, H., Chiu, S.Y., O'Rourke, K.P., Arnaud, J., Yimlamai, D., Thery, M., Camargo, F.D., and Pellman, D. (2014). Cytokinesis failure triggers hippo tumor suppressor pathway activation. Cell 158, 833-848. https://doi.org/10.1016/j.cell.2014.06.029
  27. Gong, R., Hong, A.W., Plouffe, S.W., Zhao, B., Liu, G.B., Yu, F.X., Xu, Y.H., and Guan, K.L. (2015). Opposing roles of conventional and novel PKC isoforms in Hippo-YAP pathway regulation. Cell Res. 25, 985-988. https://doi.org/10.1038/cr.2015.88
  28. Gregorieff, A., Liu, Y., Inanlou, M.R., Khomchuk, Y., and Wrana, JL. (2015). Yap-dependent reprogramming of Lgr5(+) stem cells drives intestinal regeneration and cancer. Nature 526, 715-718. https://doi.org/10.1038/nature15382
  29. Gronich, N., and Rennert, G. (2013). Beyond aspirin-cancer prevention with statins, metformin and bisphosphonates. Na. Re. Clin. Oncol. 10, 625-642. https://doi.org/10.1038/nrclinonc.2013.169
  30. Guo, Y., Cui, J., Ji, Z., Cheng, C., Zhang, K., Zhang, C., Chu, M., Zhao, Q., Yu, Z., Zhang, Y., et al. (2017). miR-302/367/LATS2/YAP pathway is essential for prostate tumor-propagating cells and promotes the development of castration resistance. Oncogene 36, 6336-6347. https://doi.org/10.1038/onc.2017.240
  31. Hansen, C.G., Ng, Y.L.D., Lam, W.L.M., Plouffe, S.W., and Guan, K.L. (2015). The Hippo pathway effectors YAP and TAZ promote cell growth by modulating amino acid signaling to mTORC1. Cell Res. 25, 1299-1313. https://doi.org/10.1038/cr.2015.140
  32. Harvey, K.F., Pfleger, C.M., and Hariharan, I.K. (2003). The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 114, 457-467. https://doi.org/10.1016/S0092-8674(03)00557-9
  33. Hong, A.W., Meng, Z.P., Yuan, H.X., Plouffe, S.W., Moon, S., Kim, W., Jho, E.H., Guan, K.L. 2017. Osmotic stress-induced phosphorylation by NLK at Ser128 activates YAP. EMBO Rep. 18, 72-86. https://doi.org/10.15252/embr.201642681
  34. Huang, J.B., Wu, S., Barrera, J., Matthews, K., and Pan, D.J. (2005). The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila homolog of YAP. Cell 122, 421-434. https://doi.org/10.1016/j.cell.2005.06.007
  35. Jang, E.J., Jeong, H., Han, K.H., Kwon, H.M., Hong, J.H., and Hwang, E.S. (2012). TAZ suppresses NFAT5 activity through tyrosine phosphorylation. Mol. Cell Biol. 32, 4925-4932. https://doi.org/10.1128/MCB.00392-12
  36. Jiao, S., Wang, H.Z., Shi, Z.B., Dong, A.M., Zhang, W.J., Song, X.M., He, F., Wang, Y.C., Zhang, Z.Z., Wang, W.J., et al. (2014). A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. Cancer Cell 25, 166-180. https://doi.org/10.1016/j.ccr.2014.01.010
  37. Kim, N.G., and Gumbiner, B.M. (2015). Adhesion to fibronectin regulates Hippo signaling via the FAK-Src-PI3K pathway. J. Cell Biol. 210, 503-515. https://doi.org/10.1083/jcb.201501025
  38. Kim, N.G., Koh, E., Chen, X., and Gumbiner, B.M. (2011). E-cadherin mediates contact inhibition of proliferation through Hippo signalingpathway components. Proc. Natl. Acad. Sci. USA 108, 11930-11935. https://doi.org/10.1073/pnas.1103345108
  39. Kim, M., Kim, M., Lee, S., Kuninaka, S., Saya, H., Lee, H., Lee, S., and Lim, D.S. (2013). cAMP/PKA signalling reinforces the LATS-YAP pathway to fully suppress YAP in response to actin cytoskeletal changes. EMBO J. 32, 1543-1555. https://doi.org/10.1038/emboj.2013.102
  40. Kim, T., Yang, S.J., Hwang, D., Song, J., Kim, M., Kim, S.K., Kang, K., Ahn, J., Lee, D., Kim, M.Y., et al. (2015). A basal-like breast cancerspecific role for SRF-IL6 in YAP-induced cancer stemness. Nat. Commun. 6, 10186. https://doi.org/10.1038/ncomms10186
  41. Kim, M.H., Kim, J., Hong, H., Lee, S.H., Lee, J,K., Jung, E., and Kim, J. (2016). Actin remodeling confers BRAF inhibitor resistance to melanoma cells through YAP/TAZ activation. EMBO J. 35, 462-478. https://doi.org/10.15252/embj.201592081
  42. Kim, W., Khan, S.K., Gvozdenovic-Jeremic, J., Kim, Y., Dahlman, J., Kim, H., Park, O., Ishitani, T., Jho, E.H., Gao, B., et al. (2017). Hippo signaling interactions with Wnt/beta-catenin and Notch signaling repress liver tumorigenesis. J. Clin. Invest. 127, 137-152.
  43. Koontz, L.M., Liu-Chittenden, Y., Yin, F., Zheng, Y., Yu, J., Huang, B., Chen, Q., Wu, S., and Pan, D. (2013). The Hippo effector Yorkie controls normal tissue growth by antagonizing scalloped-mediated default repression. Dev. Cell 25, 388-401. https://doi.org/10.1016/j.devcel.2013.04.021
  44. Lamar, J.M., Stern, P., Liu, H., Schindler, J.W., Jiang, Z.G., and Hynes, R.O. (2012). The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proc. Natl. Acad. Sci. USA 109, E2441-E2450. https://doi.org/10.1073/pnas.1212021109
  45. Lee, H.J., Diaz, M.F., Price, K.M., Ozuna, J.A., Zhang, S., Sevick-Muraca, E.M., Hagan, J.P., and Wenzel, P.L. (2017). Fluid shear stress activates YAP1 to promote cancer cell motility. Nat. Commun. 8, 14122. https://doi.org/10.1038/ncomms14122
  46. Lehmann, W., Mossmann, D., Kleemann, J., Mock, K., Meisinger, C., Brummer, T., Herr, R., Brabletz, S., Stemmler, M.P., and Brabletz, T. (2016). ZEB1 turns into a transcriptional activator by interacting with YAP1 in aggressive cancer types. Nat. Commun. 7, 10498. https://doi.org/10.1038/ncomms10498
  47. Lei, Q.Y., Zhang, H., Zhao, B., Zha, Z.Y., Bai, F., Pei, X.H., Zhao, S., Xiong, Y., and Guan, K.L. (2008). TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Mol. Cell Biol. 28, 2426-2436. https://doi.org/10.1128/MCB.01874-07
  48. Liang, N., Zhang, C., Dill, P., Panasyuk, G., Pion, D., Koka, V., Gallazzini, M., Olson, E.N., Lam, H., Henske, E.P., et al. (2014). Regulation of YAP by mTOR and autophagy reveals a therapeutic target of tuberous sclerosis complex. J. Exp. Med. 211, 2249-2263. https://doi.org/10.1084/jem.20140341
  49. Lin, L.P., Sabnis, A.J., Chan, E., Olivas, V., Cade, L., Pazarentzos, E., Asthana, S., Neel, D., Yan, J.J., Lu, X.Y., et al. (2015). The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies. Nat. Genet. 47, 250-256. https://doi.org/10.1038/ng.3218
  50. Lin, K.C., Moroishi, T., Meng, Z.P., Jeong, H.S., Plouffe, S.W., Sekido, Y., Han, J.H., Park, H.W., and Guan, K.L. (2017). Regulation of Hippo pathway transcription factor TEAD by p38 MAPK-induced cytoplasmic translocation. Nat. Cell Biol. 19, 996-1002. https://doi.org/10.1038/ncb3581
  51. Liu, G., Yu, F.X., Kim, Y.C., Meng, Z., Naipauer, J., Looney, D.J., Liu, X., Gutkind, J.S., Mesri, E,A., and Guan, K.L. (2015). Kaposi sarcomaassociated herpesvirus promotes tumorigenesis by modulating the Hippo pathway. Oncogene 34, 3536-3546. https://doi.org/10.1038/onc.2014.281
  52. Liu-Chittenden, Y., Huang, B., Shim, J.S., Chen, Q., Lee, S.J., Anders, R.A., Liu, J.O., and Pan, D.J. (2012). Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Gene Dev. 26, 1300-1305. https://doi.org/10.1101/gad.192856.112
  53. Ma, B., Chen, Y., Chen, L., Cheng, H.C., Mu, C.L., Li, J., Gao, R.Z., Zhou, C.Q., Cao, L., Liu, J.H., et al. (2015). Hypoxia regulates Hippo signalling through the SIAH2 ubiquitin E3 ligase. Nat. Cell Biol. 17, 95-103.
  54. Mao, B., Hu, F., Cheng, J., Wang, P., Xu, M., Yuan, F., Meng, S., Wang, Y., Yuan, Z., and Bi, W. (2014). SIRT1 regulates YAP2-mediated cell proliferation and chemoresistance in hepatocellular carcinoma. Oncogene 33, 1468-1474. https://doi.org/10.1038/onc.2013.88
  55. Meng, Z., Moroishi, T., Mottier-Pavie, V., Plouffe, S.W., Hansen, C.G., Hong, A.W., Park, H.W., Mo, J.S., Lu, W., Lu, S., et al. (2015). MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway. Nat. Commun. 6, 8357. https://doi.org/10.1038/ncomms9357
  56. Meng, Z.P., Moroishi, T., and Guan, K.L. (2016). Mechanisms of Hippo pathway regulation. Gene Dev. 30, 1-17. https://doi.org/10.1101/gad.274027.115
  57. Miller, E., Yang, J.Y., DeRan, M., Wu, C.L., Su, A.I., Bonamy, G.M.C., Liu, J., Peters, E.C., and Wu, X. (2012). Identification of Serum-Derived Sphingosine-1-Phosphate as a Small Molecule Regulator of YAP. Chem. Biol. 19, 955-962. https://doi.org/10.1016/j.chembiol.2012.07.005
  58. Mo, J.S., Yu, F.X., Gong, R., Brown, J.H., and Guan, K.L. (2012). Regulation of the Hippo-YAP pathway by protease-activated receptors (PARs). Gene Dev. 26, 2138-2143. https://doi.org/10.1101/gad.197582.112
  59. Mo, J.S., Meng, Z., Kim, Y.C., Park, H.W., Hansen, C.G., Kim, S, Lim, D.S., and Guan, K.L. (2015). Cellular energy stress induces AMPKmediated regulation of YAP and the Hippo pathway. Nat. Cell Biol. 17, 500-510. https://doi.org/10.1038/ncb3111
  60. Moroishi, T., Hayashi, T., Pan, W.W., Fujita, Y., Holt, M.V., Qin, J., Carson, D.A., and Guan, K.L. (2016). The Hippo pathway kinases LATS1/2 suppress cancer immunity. Cell 167, 1525-1539. https://doi.org/10.1016/j.cell.2016.11.005
  61. Nishioka, N., Inoue, K., Adachi, K., Kiyonari, H., Ota, M., Ralston, A., Yabuta, N., Hirahara, S., Stephenson, R.O., Ogonuki, N., et al. (2009). The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev. Cell 16, 398-410. https://doi.org/10.1016/j.devcel.2009.02.003
  62. Noland, C.L., Gierke, S., Schnier, P.D., Murray, J., Sandoval, W.N., Sagolla, M., Dey, A., Hannoush, R.N., Fairbrother, W.J., and Cunningham, C.N. (2016). Palmitoylation of TEAD transcription factors is required for their stability and function in Hippo pathway signaling. Structure 24, 179-186. https://doi.org/10.1016/j.str.2015.11.005
  63. O'Connell, M.P., Marchbank, K., Webster, M.R., Valiga, A.A., Kaur, A., Vultur, A., Li, L., Herlyn, M., Villanueva, J., Liu, Q., et al. (2013). Hypoxia induces phenotypic plasticity and therapy resistance in melanoma via the tyrosine kinase receptors ROR1 and ROR2. Cancer Discov. 3, 1378-1393. https://doi.org/10.1158/2159-8290.CD-13-0005
  64. O'Hayre, M., Vazquez-Prado, J., Kufareva, I., Stawiski, E.W., Handel, T.M., Seshagiri, S., and Gutkind, J.S. (2013). The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer. Nat. Rev. Cancer 13, 412-424. https://doi.org/10.1038/nrc3521
  65. Ota, M., and Sasaki, H. (2008). Mammalian Tead proteins regulate cell proliferation and contact inhibition as transcriptional mediators of Hippo signaling. Development 135, 4059-4069. https://doi.org/10.1242/dev.027151
  66. Overholtzer, M., Zhang, J., Smolen, G.A., Muir, B., Li, W., Sgroi, D.C., Deng, C.X., Brugge, J.S., and Haber, D.A. (2006). Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc. Natl. Acad. Sci. USA 103, 12405-12410. https://doi.org/10.1073/pnas.0605579103
  67. Park, H.W., and Guan, K.L. (2013). Regulation of the Hippo pathway and implications for anticancer drug development. Trends Pharmacol. Sci. 34, 581-589. https://doi.org/10.1016/j.tips.2013.08.006
  68. Park, H.W., Kim, Y.C., Yu, B., Moroishi, T., Mo, J.S., Plouffe, S.W., Meng, Z.P., Lin, K.C., Yu, F.X., Alexander, C.M., et al. (2015). Alternative Wnt Signaling Activates YAP/TAZ. Cell 162, 780-794. https://doi.org/10.1016/j.cell.2015.07.013
  69. Porazinski, S., Wang, H.J., Asaoka, Y., Behrndt, M., Miyamoto, T., Morita, H., Hata, S., Sasaki, T., Krens, S.F.G., Osada, Y., et al. (2015). YAP is essential for tissue tension to ensure vertebrate 3D body shape. Nature 521, 217-221. https://doi.org/10.1038/nature14215
  70. Qin, H., Hejna, M., Liu, Y., Percharde, M., Wossidlo, M., Blouin, L., Durruthy-Durruthy, J., Wong, P., Qi, Z., Yu, J., et al. (2016). YAP induces human naive pluripotency. Cell Rep. 14, 2301-2312. https://doi.org/10.1016/j.celrep.2016.02.036
  71. Schlegelmilch, K., Mohseni, M., Kirak, O., Pruszak, J., Rodriguez, J.R., Zhou, D., Kreger, B.T., Vasioukhin, V., Avruch, J., Brummelkamp, T.R., et al. 2011. Yap1 acts downstream of alpha-catenin to control epidermal proliferation. Cell 144, 782-795. https://doi.org/10.1016/j.cell.2011.02.031
  72. Seo, E., Basu-Roy, U., Gunaratne, P.H., Coarfa, C., Lim, D.S., Basilico, C., and Mansukhani, A. (2013). SOX2 regulates YAP1 to maintain stemness and determine cell fate in the osteo-adipo lineage. Cell Rep. 3, 2075-2087. https://doi.org/10.1016/j.celrep.2013.05.029
  73. Serrano, I., McDonald, P.C., Lock, F., Muller, W.J., and Dedhar, S. (2013). Inactivation of the Hippo tumour suppressor pathway by integrin-linked kinase. Nat. Commun. 4, 2976. https://doi.org/10.1038/ncomms3976
  74. Shao, D., Zhai, P.Y., Del Re, D.P., Sciarretta, S., Yabuta, N., Nojima, H., Lim, D.S., Pan, D.J., and Sadoshima, J. (2014a). A functional interaction between Hippo-YAP signalling and FoxO1 mediates the oxidative stress response. Nat. Commun. 5, 3315. https://doi.org/10.1038/ncomms4315
  75. Shao, D.D., Xue ,W., Krall, E.B., Bhutkar, A., Piccioni, F., Wang, X., Schinzel, A.C., Sood, S., Rosenbluh, J., Kim, J.W., et al. (2014b). KRAS and YAP1 converge to regulate EMT and tumor survival. Cell 158, 171-184. https://doi.org/10.1016/j.cell.2014.06.004
  76. Shibue, T., and Weinberg, R.A. (2017). EMT, CSCs, and drug resistance, the mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. 14, 611-629. https://doi.org/10.1038/nrclinonc.2017.44
  77. Song, S.M, Ajani, J.A., Honjo, S., Maru, D.M., Chen, Q.R., Scott, A.W., Heallen, T.R., Xiao, L.C., Hofstetter, W.L., Weston, B., et al. (2014). Hippo coactivator YAP1 upregulates SOX9 and endows esophageal cancer cells with stem-like properties. Cancer Res. 74, 4170-4182. https://doi.org/10.1158/0008-5472.CAN-13-3569
  78. Sorrentino, G., Ruggeri, N., Specchia, V., Cordenonsi, M., Mano, M., Dupont, S., Manfrin, A., Ingallina, E., Sommaggio, R., Piazza, S., et al. (2014). Metabolic control of YAP and TAZ by the mevalonate pathway. Nat. Cell Biol. 16, 357-366. https://doi.org/10.1038/ncb2936
  79. Sorrentino, G., Ruggeri, N., Zannini, A., Ingallina, E., Bertolio, R., Marotta, C., Neri, C., Cappuzzello, E., Forcato, M., Rosato, A., et al. (2017). Glucocorticoid receptor signalling activates YAP in breast cancer. Nat. Commun. 8, 14073. https://doi.org/10.1038/ncomms14073
  80. Strano, S., Munarriz, E., Rossi, M., Castagnoli, L., Shaul, Y., Sacchi, A., Oren, M., Sudol, M., Cesareni, G., and Blandino, G. (2001). Physical interaction with Yes-associated protein enhances p73 transcriptional activity. J. Biol. Chem. 276, 15164-15173. https://doi.org/10.1074/jbc.M010484200
  81. Tang, Y., Feinberg, T., Keller, E.T., Li, X.Y., and Weiss, S.J. (2016). Snail/Slug binding interactions with YAP/TAZ control skeletal stem cell self-renewal and differentiation. Nat. Cell Biol. 18, 917-929. https://doi.org/10.1038/ncb3394
  82. Tsai, H.C., Huang, C.Y., Su, H.L., and Tang, C.H. (2014). CTGF increases drug resistance to paclitaxel by upregulating survivin expression in human osteosarcoma cells. Biochim. Biophys. Acta 1843, 846-854. https://doi.org/10.1016/j.bbamcr.2014.01.007
  83. Tumaneng, K., Schlegelmilch, K., Russell, R.C., Yimlamai, D., Basnet, H., Mahadevan, N., Fitamant, J., Bardeesy, N., Camargo, F.D., and Guan, K.L. (2012). YAP mediates crosstalk between the Hippo and PI(3)K-TOR pathways by suppressing PTEN via miR-29. Nat. Cell Biol. 14, 1322-1329. https://doi.org/10.1038/ncb2615
  84. Tung, S.L., Huang, W.C., Hsu, F.C., Yang, Z.P., Jang, T.H., Chang, J.W., Chuang, C.M., Lai, C.R., and Wang, L.H. (2017). miRNA-34c-5p inhibits amphiregulin-induced ovarian cancer stemness and drug resistance via downregulation of the AREG-EGFR-ERK pathway. Oncogenesis 6, e3226.
  85. Varelas, X., Sakuma, R., Samavarchi-Tehrani, P., Peerani, R., Rao, B.M., Dembowy, J., Yaffe, M.B., Zandstra, P.W., and Wrana, J.L. (2008). TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat. Cell Biol. 10, 837-848. https://doi.org/10.1038/ncb1748
  86. Varelas, X., Samavarchi-Tehrani, P., Narimatsu, M., Weiss, A., Cockburn, K., Larsen, B.G., Rossant, J., and Wrana, J.L. (2010). The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-beta-SMAD pathway. Dev. Cell 19, 831-844. https://doi.org/10.1016/j.devcel.2010.11.012
  87. Wang, M.Y., Chen, P.S., Prakash, E., Hsu, H.C., Huang, H.Y., Lin, M.T., Chang, K.J., and Kuo, M.L. (2009). Connective tissue growth factor confers drug resistance in breast cancer through concomitant up-regulation of Bcl-xL and cIAP1. Cancer Res. 69, 3482-3491. https://doi.org/10.1158/0008-5472.CAN-08-2524
  88. Wang, Z., Wu, Y., Wang, H., Zhang, Y., Mei, L., Fang, X., Zhang, X., Zhang, F., Chen, H., Liu, Y., et al. (2014). Interplay of mevalonate and Hippo pathways regulates RHAMM transcription via YAP to modulate breast cancer cell motility. Proc. Natl. Acad. Sci. USA 111, E89-98. https://doi.org/10.1073/pnas.1319190110
  89. Wang, W., Xiao, Z.D., Li, X., Aziz, K.E., Gan, B., Johnson, R.L., and Chen, J. (2015). AMPK modulates Hippo pathway activity to regulate energy homeostasis. Nat. Cell Biol. 17, 490-499. https://doi.org/10.1038/ncb3113
  90. Wang, C, Zhu, X.Y., Feng, W.W., Yu, Y.H., Jeong, K.J., Guo, W., Lu, Y.L., and Mills, G.B. (2016a). Verteporfin inhibits YAP function through up-regulating 14-3-3 sigma sequestering YAP in the cytoplasm. Am. J. Cancer Res. 6, 27-37.
  91. Wang, L., Luo, J.Y., Li, B.C., Tian, X.Y., Chen, L.J., Huang, Y.H., Liu, J., Deng, D., Lau, C.W., Wan, S., et al. (2016b). Integrin-YAP/TAZ-JNK cascade mediates atheroprotective effect of unidirectional shear flow. Nature 540, 579-582. https://doi.org/10.1038/nature20602
  92. Wang, L., Luo, J.Y., Li, B.C., Tian, X.Y., Chen, L.J., Huang, Y.H., Liu, J., Deng, D., Law, C.W., Wan, S., et al. (2016c). Integrin-YAP/TAZ-JNK cascade mediates atheroprotective effect of unidirectional shear flow. Nature 540, 579-582. https://doi.org/10.1038/nature20602
  93. Wang, Z., Liu, P., Zhou, X., Wang, T.X., Feng X., Sun, Y.P., Xiong, Y., Yuan, H.X., and Guan, K.L. (2017). Endothelin promotes colorectal tumorigenesis by activating YAP/TAZ. Cancer Res. 77, 2413-2423. https://doi.org/10.1158/0008-5472.CAN-16-3229
  94. Wu, S., Huang, J.B., Dong, J.X., and Pan, D.J. (2003). hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell 114, 445-456. https://doi.org/10.1016/S0092-8674(03)00549-X
  95. Wu, H.T., Wei, L.Y., Fan, F.Q., Ji, S.Y., Zhang, S.H., Geng, J., Hong, L.X., Fan, X., Chen, Q.H., Tian, J., et al. (2015). Integration of Hippo signalling and the unfolded protein response to restrain liver overgrowth and tumorigenesis. Nat. Commun. 6, 6239. https://doi.org/10.1038/ncomms7239
  96. Xin, M., Kim, Y., Sutherland, L.B., Murakami, M., Qi, X.X., McAnally, J., Porrello, E.R., Mahmoud, A.I., Tan, W., Shelton, J.M., et al. (2013). Hippo pathway effector Yap promotes cardiac regeneration. Proc. Natl. Acad. Sci. USA 110, 13839-13844. https://doi.org/10.1073/pnas.1313192110
  97. Xu, T.A., Wang, W.Y., Zhang, S., Stewart, R.A., and Yu, W. (1995). Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 121, 1053-1063.
  98. Yang, S.P., Zhang, L., Liu, M., Chong, R., Ding, S.J., Chen, Y.H., and Dong, J.X. (2013). CDK1 phosphorylation of YAP promotes mitotic defects and cell motility and is essential for neoplastic transformation. Cancer Res. 73, 6722-6733. https://doi.org/10.1158/0008-5472.CAN-13-2049
  99. Yimlamai, D., Christodoulou, C., Galli, G.G., Yanger, K., Pepe-Mooney, B., Gurung, B., Shrestha, K., Cahan, P., Stanger, B.Z., and Camargo, F.D. (2014). Hippo pathway activity influences liver cell fate. Cell 157, 1324-1338. https://doi.org/10.1016/j.cell.2014.03.060
  100. Yin, D., Chen, W., O'Kelly, J., Lu, D., Ham, M., Doan, N.B., Xie, D., Wang, C., Vadgama, J., Said, J.W., et al. 2010. Connective tissue growth factor associated with oncogenic activities and drug resistance in glioblastoma multiforme. Int. J. Cancer 127, 2257-2267. https://doi.org/10.1002/ijc.25257
  101. Yu, F.X., Zhao, B., Panupinthu, N., Jewell, J.L., Lian, I., Wang, L.H., Zhao, J.G., Yuan, H.X., Tumaneng, K., Li, H.R., et al. (2012). Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 150, 780-791. https://doi.org/10.1016/j.cell.2012.06.037
  102. Yu, F.X., Zhang, Y.F., Park, H.W., Jewell, J.L., Chen, Q., Deng, Y.T., Pan, D.J., Taylor, S.S., Lai, Z.C., and Guan, K.L. (2013). Protein kinase A activates the Hippo pathway to modulate cell proliferation and differentiation. Gene Dev. 27, 1223-1232. https://doi.org/10.1101/gad.219402.113
  103. Yu, F.X., Luo, J., Mo, J.S., Liu, G.B., Kim, Y.C., Meng, Z.P., Zhao, L., Peyman, G., Ouyang, H., Jiang, W., et al. (2014). Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP. Cancer Cell 25, 822-830. https://doi.org/10.1016/j.ccr.2014.04.017
  104. Yu, F.X., Zhao, B., and Guan, K.L. (2015). Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer. Cell 163, 811-828. https://doi.org/10.1016/j.cell.2015.10.044
  105. Zanconato, F., Forcato, M., Battilana, G., Azzolin, L., Quaranta, E., Bodega, B., Rosato, A., Bicciato, S., Cordenonsi, M., and Piccolo, S. (2015). Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat. Cell Biol. 17, 1218-1227. https://doi.org/10.1038/ncb3216
  106. Zanconato, F., Cordenonsi, M., and Piccolo, S. (2016). YAP/TAZ at the roots of cancer. Cancer Cell 29, 783-803. https://doi.org/10.1016/j.ccell.2016.05.005
  107. Zhang, H., Liu, C.Y., Zha, Z.Y., Zhao, B., Yao, J., Zhao, S., Xiong, Y., Lei, Q.Y., and Guan, K.L. (2009a). TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition. J. Biol. Chem. 284, 13355-13362. https://doi.org/10.1074/jbc.M900843200
  108. Zhang, J.M., Ji, J.Y., Yu, M., Overholtzer, M., Smolen, G.A., Wang, R., Brugge, J.S., Dyson, N.J., and Haber, D.A. (2009b). YAP-dependent induction of amphiregulin identifies a non-cell-autonomous component of the Hippo pathway. Nat. Cell Biol. 11, 1444-U1134. https://doi.org/10.1038/ncb1993
  109. Zhang, W.J., Gao, Y.J., Li, P.X., Shi, Z.B., Guo, T., Li, F., Han, X.K., Feng, Y., Zheng, C., Wang, Z.Y., et al. (2014). VGLL4 functions as a new tumor suppressor in lung cancer by negatively regulating the YAP-TEAD transcriptional complex. Cell Res. 24, 331-343. https://doi.org/10.1038/cr.2014.10
  110. Zhang, L., Yang, S.P., Chen, X.C., Stauffer, S., Yu, F., Lele, S.M., Fu, K., Datta, K., Palermo, N., Chen, Y.H., et al. (2015). The Hippo Pathway Effector YAP Regulates Motility, Invasion, and Castration-Resistant Growth of Prostate Cancer Cells. Mol. Cell Biol. 35, 1350-1362. https://doi.org/10.1128/MCB.00102-15
  111. Zhang, K., Hu, Z., Qi, H., Shi, Z., Chang, Y., Yao, Q., Cui, H., Zheng, L., Han, Y., Han, X., et al. (2016). G-protein-coupled receptors mediate omega-3 PUFAs-inhibited colorectal cancer by activating the Hippo pathway. Oncotarget 7, 58315-58330.
  112. Zhao, B., Wei, X., Li, W., Udan, R.S., Yang, Q., Kim, J., Xie, J., Ikenoue, T., Yu, J., Li, L., et al. (2007). Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Gene Dev. 21, 2747-2761. https://doi.org/10.1101/gad.1602907
  113. Zhao, B., Ye, X., Yu, J., Li, L., Li, W., Li, S., Yu, J., Lin, J.D., Wang, C.Y., Chinnaiyan, A.M., et al. (2008a). TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 22, 1962-1971. https://doi.org/10.1101/gad.1664408
  114. Zhao, B., Ye, X., Yu, J.D., Li, L., Li, W.Q., Li, S.M., Yu, J.J., Lin, J.D., Wang, C.Y., Chinnaiyan, A.M., et al. (2008b). TEAD mediates YAPdependent gene induction and growth control. Gene Dev. 22, 1962-1971. https://doi.org/10.1101/gad.1664408
  115. Zhao, B., Li, L., Wang, L., Wang, C.Y., Yu, J.D., and Guan, K.L. (2012). Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Gene Dev. 26, 54-68. https://doi.org/10.1101/gad.173435.111
  116. Zhao, Y.L., Khanal, P., Savage, P., She, Y.M., Cyr, T.D., and Yang, X.L. (2014). YAP-Induced Resistance of Cancer Cells to Antitubulin Drugs Is Modulated by a Hippo-Independent Pathway. Cancer Res 74, 4493-4503. https://doi.org/10.1158/0008-5472.CAN-13-2712
  117. Zhou, X., Wang, S.Y., Wang, Z., Feng, X., Liu, P., Lv, X.B., Li, F.L., Yu, F.X., Sun, Y.P., Yuan, H.X., et al. (2015). Estrogen regulates Hippo signaling via GPER in breast cancer. J. Clin. Invest. 125, 2123-2135. https://doi.org/10.1172/JCI79573

피인용 문헌

  1. Soft Tissue Sarcoma Cancer Stem Cells: An Overview vol.8, pp.2234-943X, 2018, https://doi.org/10.3389/fonc.2018.00475
  2. Dynamic PEG-Peptide Hydrogels via Visible Light and FMN‐Induced Tyrosine Dimerization vol.7, pp.22, 2018, https://doi.org/10.1002/adhm.201800954
  3. YAP/TAZ Activation as a Target for Treating Metastatic Cancer vol.10, pp.4, 2018, https://doi.org/10.3390/cancers10040115
  4. Integrating the DNA damage and protein stress responses during cancer development and treatment vol.246, pp.1, 2018, https://doi.org/10.1002/path.5097
  5. Mechanobiology of Cancer Stem Cells and Their Niche vol.12, pp.1, 2019, https://doi.org/10.1007/s12307-019-00222-4
  6. Co-regulatory Network of Oncosuppressor miRNAs and Transcription Factors for Pathology of Human Hepatic Cancer Stem Cells (HCSC) vol.9, pp.None, 2019, https://doi.org/10.1038/s41598-019-41978-5
  7. PI3K-Yap activity drives cortical gyrification and hydrocephalus in mice vol.8, pp.None, 2018, https://doi.org/10.7554/elife.45961
  8. The Hippo Pathway Regulates Caveolae Expression and Mediates Flow Response via Caveolae vol.29, pp.2, 2018, https://doi.org/10.1016/j.cub.2018.11.066
  9. PDCD2 sensitizes HepG2 cells to sorafenib by suppressing epithelial-mesenchymal transition vol.19, pp.3, 2018, https://doi.org/10.3892/mmr.2019.9860
  10. The Hippo Pathway in Prostate Cancer vol.8, pp.4, 2019, https://doi.org/10.3390/cells8040370
  11. The Role of MicroRNAs in the Regulation of Gastric Cancer Stem Cells: A Meta-Analysis of the Current Status vol.8, pp.5, 2018, https://doi.org/10.3390/jcm8050639
  12. MST1 Suppresses Pancreatic Cancer Progression via ROS-Induced Pyroptosis vol.17, pp.6, 2019, https://doi.org/10.1158/1541-7786.mcr-18-0910
  13. Regulation of TEAD Transcription Factors in Cancer Biology vol.8, pp.6, 2018, https://doi.org/10.3390/cells8060600
  14. The Central Contributions of Breast Cancer Stem Cells in Developing Resistance to Endocrine Therapy in Estrogen Receptor (ER)-Positive Breast Cancer vol.11, pp.7, 2018, https://doi.org/10.3390/cancers11071028
  15. Cdh4 Down-Regulation Impairs in Vivo Infiltration and Malignancy in Patients Derived Glioblastoma Cells vol.20, pp.16, 2018, https://doi.org/10.3390/ijms20164028
  16. Circular RNAs in Cancer: emerging functions in hallmarks, stemness, resistance and roles as potential biomarkers vol.18, pp.1, 2019, https://doi.org/10.1186/s12943-019-1002-6
  17. Cancer cell reprogramming: a promising therapy converting malignancy to benignity vol.39, pp.1, 2018, https://doi.org/10.1186/s40880-019-0393-5
  18. Prostate-Derived ETS Factor (PDEF) Modulates Yes Associated Protein 1 (YAP1) in Prostate Cancer Cells: A Potential Cross-Talk between PDEF and Hippo Signaling vol.12, pp.4, 2018, https://doi.org/10.3390/ph12040181
  19. ERK1 indicates good prognosis and inhibits breast cancer progression by suppressing YAP1 signaling vol.11, pp.24, 2018, https://doi.org/10.18632/aging.102572
  20. Intrinsic and Extrinsic Modulators of the Epithelial to Mesenchymal Transition: Driving the Fate of Tumor Microenvironment vol.10, pp.None, 2020, https://doi.org/10.3389/fonc.2020.01122
  21. Single-Cell RNA Sequencing Identifies Yes-Associated Protein 1–Dependent Hepatic Mesothelial Progenitors in Fibrolamellar Carcinoma vol.190, pp.1, 2018, https://doi.org/10.1016/j.ajpath.2019.09.018
  22. Inhibition of Yes-Associated Protein-1 (YAP1) Enhances the Response of Invasive Breast Cancer Cells to the Standard Therapy vol.12, pp.None, 2018, https://doi.org/10.2147/bctt.s268926
  23. Selective Inhibition of Esophageal Cancer Stem-like Cells with Salinomycin vol.20, pp.None, 2018, https://doi.org/10.2174/1871520620666200310093125
  24. Sphere-induced reprogramming of RPE cells into dual-potential RPE stem-like cells vol.52, pp.None, 2018, https://doi.org/10.1016/j.ebiom.2019.102618
  25. Human telomerase reverse transcriptase is a novel target of Hippo‐YAP pathway vol.34, pp.3, 2018, https://doi.org/10.1096/fj.201902147r
  26. YAP/TAZ are Activated by Mechanical and Hormonal Stimuli in Myometrium and Exhibit Increased Baseline Activation in Uterine Fibroids vol.27, pp.4, 2018, https://doi.org/10.1007/s43032-019-00106-4
  27. The YAP/TAZ Pathway in Osteogenesis and Bone Sarcoma Pathogenesis vol.9, pp.4, 2020, https://doi.org/10.3390/cells9040972
  28. The role of Hippo signaling pathway and mechanotransduction in tuning embryoid body formation and differentiation vol.235, pp.6, 2020, https://doi.org/10.1002/jcp.29455
  29. Caudatin Isolated from Cynanchum auriculatum Inhibits Breast Cancer Stem Cell Formation via a GR/YAP Signaling vol.10, pp.6, 2020, https://doi.org/10.3390/biom10060925
  30. GPR50 Promotes Hepatocellular Carcinoma Progression via the Notch Signaling Pathway through Direct Interaction with ADAM17 vol.17, pp.None, 2020, https://doi.org/10.1016/j.omto.2020.04.002
  31. Dynamic extracellular matrix stiffening induces a phenotypic transformation and a migratory shift in epithelial cells vol.12, pp.6, 2018, https://doi.org/10.1093/intbio/zyaa012
  32. MicroRNA‐188 inhibits biological activity of lung cancer stem cells through targeting MDK and mediating the Hippo pathway vol.105, pp.8, 2020, https://doi.org/10.1113/ep088704
  33. Cancer Metabolism: Phenotype, Signaling and Therapeutic Targets vol.9, pp.10, 2018, https://doi.org/10.3390/cells9102308
  34. Helicobacter pylori Virulence Factor Cytotoxin-Associated Gene A (CagA)-Mediated Gastric Pathogenicity vol.21, pp.19, 2020, https://doi.org/10.3390/ijms21197430
  35. MicroRNA‐10a promotes epithelial‐to‐mesenchymal transition and stemness maintenance of pancreatic cancer stem cells via upregulating the Hippo signaling pathway through WWC2 inhibiti vol.121, pp.11, 2018, https://doi.org/10.1002/jcb.29716
  36. Disease-related cellular protein networks differentially affected under different EGFR mutations in lung adenocarcinoma vol.10, pp.None, 2018, https://doi.org/10.1038/s41598-020-67894-7
  37. A new perspective on the interaction between the Vg/VGLL1-3 proteins and the TEAD transcription factors vol.10, pp.1, 2020, https://doi.org/10.1038/s41598-020-74584-x
  38. Extracellular vesicle-associated miR-135b and -135a regulate stemness in Group 4 medulloblastoma cells by targeting angiomotin-like 2 vol.20, pp.1, 2018, https://doi.org/10.1186/s12935-020-01645-6
  39. Emerging agents that target signaling pathways in cancer stem cells vol.13, pp.1, 2018, https://doi.org/10.1186/s13045-020-00901-6
  40. The Antiasthma Medication Ciclesonide Suppresses Breast Cancer Stem Cells through Inhibition of the Glucocorticoid Receptor Signaling-Dependent YAP Pathway vol.25, pp.24, 2018, https://doi.org/10.3390/molecules25246028
  41. Clinical significance of YAP1 and TAZ in esophageal squamous cell carcinoma vol.100, pp.28, 2018, https://doi.org/10.1097/md.0000000000026597
  42. Research Progress on Regulating LncRNAs of Hepatocellular Carcinoma Stem Cells vol.14, pp.None, 2021, https://doi.org/10.2147/ott.s289064
  43. The Hippo Signaling Pathway in Drug Resistance in Cancer vol.13, pp.2, 2021, https://doi.org/10.3390/cancers13020318
  44. Long non-coding RNA LOC107985656 represses the proliferation of hepatocellular carcinoma cells through activation of the tumor-suppressive Hippo pathway vol.12, pp.1, 2021, https://doi.org/10.1080/21655979.2021.1984005
  45. Transcriptomic Profiling Identifies DCBLD2 as a Diagnostic and Prognostic Biomarker in Pancreatic Ductal Adenocarcinoma vol.8, pp.None, 2021, https://doi.org/10.3389/fmolb.2021.659168
  46. Emerging Role of E2F Family in Cancer Stem Cells vol.11, pp.None, 2018, https://doi.org/10.3389/fonc.2021.723137
  47. Knockdown of TAZ decrease the cancer stem properties of ESCC cell line YM-1 by modulation of Nanog, OCT-4 and SOX2 vol.769, pp.None, 2018, https://doi.org/10.1016/j.gene.2020.145207
  48. The stabilization of yes‐associated protein by TGFβ‐activated kinase 1 regulates the self‐renewal and oncogenesis of gastric cancer stem cells vol.25, pp.14, 2018, https://doi.org/10.1111/jcmm.16660
  49. A Yes-Associated Protein (YAP) and Insulin-Like Growth Factor 1 Receptor (IGF-1R) Signaling Loop Is Involved in Sorafenib Resistance in Hepatocellular Carcinoma vol.13, pp.15, 2018, https://doi.org/10.3390/cancers13153812
  50. The Dimeric Form of HPV16 E6 Is Crucial to Drive YAP/TAZ Upregulation through the Targeting of hScrib vol.13, pp.16, 2021, https://doi.org/10.3390/cancers13164083
  51. Antibacterial and Cellular Behaviors of Novel Zinc-Doped Hydroxyapatite/Graphene Nanocomposite for Bone Tissue Engineering vol.22, pp.17, 2021, https://doi.org/10.3390/ijms22179564
  52. Design, Synthesis and Evaluation of a Series of 1,5‐Diaryl‐1,2,3‐triazole‐4‐carbohydrazones as Inhibitors of the YAP‐TAZ/TEAD Complex vol.16, pp.18, 2018, https://doi.org/10.1002/cmdc.202100153
  53. Epithelial to Mesenchymal Transition: Key Regulator of Pancreatic Ductal Adenocarcinoma Progression and Chemoresistance vol.13, pp.21, 2021, https://doi.org/10.3390/cancers13215532
  54. Control of tissue homeostasis, tumorigenesis, and degeneration by coupled bidirectional bistable switches vol.17, pp.11, 2021, https://doi.org/10.1371/journal.pcbi.1009606
  55. The Hippo signaling pathway in leukemia: function, interaction, and carcinogenesis vol.21, pp.1, 2018, https://doi.org/10.1186/s12935-021-02408-7
  56. Ellagitannins, promising pharmacological agents for the treatment of cancer stem cells vol.36, pp.1, 2018, https://doi.org/10.1002/ptr.7307