Browse > Article
http://dx.doi.org/10.5483/BMBRep.2016.49.1.217

The expression and functional roles of microRNAs in stem cell differentiation  

Shim, Jiwon (Department of Life Science, College of Natural Sciences)
Nam, Jin-Wu (Research Institute of Natural Sciences, Hanyang University)
Publication Information
BMB Reports / v.49, no.1, 2016 , pp. 3-10 More about this Journal
Abstract
microRNAs (miRNAs) are key regulators of cell state transition and retention during stem cell proliferation and differentiation by post-transcriptionally downregulating hundreds of conserved target genes via seed-pairing in their 3' untranslated region. In embryonic and adult stem cells, dozens of miRNAs that elaborately control stem cell processes by modulating the transcriptomic context therein have been identified. Some miRNAs accelerate the change of cell state into progenitor cell lineages—such as myoblast, myeloid or lymphoid progenitors, and neuro precursor stem cells—and other miRNAs decelerate the change but induce proliferative activity, resulting in cell state retention. This cell state choice can be controlled by endogenously or exogenously changing miRNA levels or by including or excluding target sites. This control of miRNA-mediated gene regulation could improve our understanding of stem cell biology and facilitate their development as therapeutic tools. [BMB Reports 2016; 49(1): 3-10]
Keywords
Adult stem cell; Differentiation; Embryonic stem cell; microRNA; Proliferation; Self-renewal;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Memczak S, Jens M, Elefsinioti A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333-338   DOI
2 Rasmussen KD, Simmini S, Abreu-Goodger C et al (2010) The miR-144/451 locus is required for erythroid homeostasis. J Exp Med 207, 1351-1358   DOI
3 Medeiros LA, Dennis LM, Gill ME et al (2011) Mir-290-295 deficiency in mice results in partially penetrant embryonic lethality and germ cell defects. Proc Natl Acad Sci U S A 108, 14163-14168   DOI
4 Kim YK, Wee G, Park J et al (2013) TALEN-based knockout library for human microRNAs. Nat Struct Mol Biol 20, 1458-1464   DOI
5 Takada S, Sato T, Ito Y et al (2013) Targeted gene deletion of miRNAs in mice by TALEN system. PLoS One 8, e76004   DOI
6 Xu N, Papagiannakopoulos T, Pan G, Thomson JA and Kosik KS (2009) MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 137, 647-658   DOI
7 Lahmy R, Soleimani M, Sanati MH, Behmanesh M, Kouhkan F and Mobarra N (2013) Pancreatic islet differentiation of human embryonic stem cells by microRNA overexpression. J Tissue Eng Regen Med 2013 Jul 30 [Epub ahead of print]
8 Deng S, Zhang Y, Xu C and Ma D (2015) MicroRNA-125b-2 overexpression represses ectodermal differentiation of mouse embryonic stem cells. Int J Mol Med 36, 355-362   DOI
9 Kuchen S, Resch W, Yamane A et al (2010) Regulation of microRNA expression and abundance during lymphopoiesis. Immunity 32, 828-839   DOI
10 Small EM, O’Rourke JR, Moresi V et al (2010) Regulation of PI3-kinase/Akt signaling by muscle-enriched microRNA-486. Proc Natl Acad Sci U S A 107, 4218-4223   DOI
11 Yeung F, Chung E, Guess MG, Bell ML and Leinwand LA (2012) Myh7b/miR-499 gene expression is transcriptionally regulated by MRFs and Eos. Nucleic Acids Res 40, 7303-7318   DOI
12 Chen JF, Tao Y, Li J et al (2010) microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J Cell Biol 190, 867-879   DOI
13 Heo I, Joo C, Kim YK et al (2009) TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 138, 696-708   DOI
14 Hagan JP, Piskounova E and Gregory RI (2009) Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nat Struct Mol Biol 16, 1021-1025   DOI
15 Heo I, Ha M, Lim J et al (2012) Mono-uridylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs. Cell 151, 521-532   DOI
16 O’Rourke JR, Georges SA, Seay HR et al (2007) Essential role for Dicer during skeletal muscle development. Dev Biol 311, 359-368   DOI
17 Davis ME, Zuckerman JE, Choi CH et al (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464, 1067-1070   DOI
18 Ma L, Reinhardt F, Pan E et al (2010) Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol 28, 341-347   DOI
19 Subramanyam D, Lamouille S, Judson RL et al (2011) Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat Biotechnol 29, 443-448   DOI
20 Cimadamore F, Amador-Arjona A, Chen C, Huang CT and Terskikh AV (2013) SOX2-LIN28/let-7 pathway regulates proliferation and neurogenesis in neural precursors. Proc Natl Acad Sci U S A 110, E3017-3026   DOI
21 Viswanathan SR, Daley GQ and Gregory RI (2008) Selective blockade of microRNA processing by Lin28. Science 320, 97-100   DOI
22 Wang G, Guo X, Hong W et al (2013) Critical regulation of miR-200/ZEB2 pathway in Oct4/Sox2-induced mesenchymal-to-epithelial transition and induced pluripotent stem cell generation. Proc Natl Acad Sci U S A 110, 2858-2863   DOI
23 Zhang Z, Hong Y, Xiang D et al (2015) MicroRNA-302/367 cluster governs hESC self-renewal by dually regulating cell cycle and apoptosis pathways. Stem Cell Reports 4, 645-657   DOI
24 Barroso-delJesus A, Romero-Lopez C, Lucena-Aguilar G et al (2008) Embryonic stem cell-specific miR302-367 cluster: human gene structure and functional characterization of its core promoter. Mol Cell Biol 28, 6609-6619   DOI
25 Rosenberg MI, Georges SA, Asawachaicharn A, Analau E and Tapscott SJ (2006) MyoD inhibits Fstl1 and Utrn expression by inducing transcription of miR-206. J Cell Biol 175, 77-85   DOI
26 Rao PK, Kumar RM, Farkhondeh M, Baskerville S and Lodish HF (2006) Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci U S A 103, 8721-8726   DOI
27 Sweetman D, Goljanek K, Rathjen T et al (2008) Specific requirements of MRFs for the expression of muscle specific microRNAs, miR-1, miR-206 and miR-133. Dev Biol 321, 491-499   DOI
28 Hsu YC and Fuchs E (2012) A family business: stem cell progeny join the niche to regulate homeostasis. Nat Rev Mol Cell Biol 13, 103-114   DOI
29 Nam JW, Rissland OS, Koppstein D et al (2014) Global analyses of the effect of different cellular contexts on microRNA targeting. Mol Cell 53, 1031-1043   DOI
30 Mayr C and Bartel DP (2009) Widespread shortening of 3'UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138, 673-684   DOI
31 Boutet SC, Cheung TH, Quach NL et al (2012) Alternative polyadenylation mediates microRNA regulation of muscle stem cell function. Cell Stem Cell 10, 327-336   DOI
32 Anokye-Danso F, Trivedi CM, Juhr D et al (2011) Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8, 376-388   DOI
33 Lin SL, Chang DC, Lin CH, Ying SY, Leu D and Wu DT (2011) Regulation of somatic cell reprogramming through inducible mir-302 expression. Nucleic Acids Res 39, 1054-1065   DOI
34 Miyoshi N, Ishii H, Nagano H et al (2011) Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 8, 633-638   DOI
35 Wang Y, Baskerville S, Shenoy A, Babiarz JE, Baehner L and Blelloch R (2008) Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat Genet 40, 1478-1483   DOI
36 Wang J, Park JW, Drissi H, Wang X and Xu RH (2014) Epigenetic regulation of miR-302 by JMJD1C inhibits neural differentiation of human embryonic stem cells. J Biol Chem 289, 2384-2395   DOI
37 Chang HM, Martinez NJ, Thornton JE, Hagan JP, Nguyen KD and Gregory RI (2012) Trim71 cooperates with microRNAs to repress Cdkn1a expression and promote embryonic stem cell proliferation. Nat Commun 3, 923   DOI
38 Landgraf P, Rusu M, Sheridan R et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401-1414   DOI
39 Linsen SE, de Wit E, de Bruijn E and Cuppen E (2010) Small RNA expression and strain specificity in the rat. BMC Genomics 11, 249   DOI
40 Shenoy A and Blelloch RH (2014) Regulation of microRNA function in somatic stem cell proliferation and differentiation. Nat Rev Mol Cell Biol 15, 565-576   DOI
41 Ahn HW, Morin RD, Zhao H et al (2010) MicroRNA transcriptome in the newborn mouse ovaries determined by massive parallel sequencing. Mol Hum Reprod 16, 463-471   DOI
42 Meunier J, Lemoine F, Soumillon M et al (2013) Birth and expression evolution of mammalian microRNA genes. Genome Res 23, 34-45   DOI
43 Hinton A, Hunter SE, Afrikanova I et al (2014) sRNA-seq analysis of human embryonic stem cells and definitive endoderm reveals differentially expressed microRNAs and novel IsomiRs with distinct targets. Stem Cells 32, 2360-2372   DOI
44 Ruby JG, Jan C, Player C et al (2006) Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127, 1193-1207   DOI
45 Chiang HR, Schoenfeld LW, Ruby JG et al (2010) Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev 24, 992-1009   DOI
46 Shkumatava A, Stark A, Sive H and Bartel DP (2009) Coherent but overlapping expression of microRNAs and their targets during vertebrate development. Genes Dev 23, 466-481   DOI
47 Sandberg R, Neilson JR, Sarma A, Sharp PA and Burge CB (2008) Proliferating cells express mRNAs with shortened 3' untranslated regions and fewer microRNA target sites. Science 320, 1643-1647   DOI
48 Chen K and Rajewsky N (2007) The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 8, 93-103   DOI
49 Arner P and Kulyte A (2015) MicroRNA regulatory networks in human adipose tissue and obesity. Nat Rev Endocrinol 11, 276-288   DOI
50 Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233   DOI
51 Flynt AS and Lai EC (2008) Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet 9, 831-842   DOI
52 Gangaraju VK and Lin H (2009) MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol 10, 116-125   DOI
53 Ha M and Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15, 509-524   DOI
54 Pencheva N and Tavazoie SF (2013) Control of metastatic progression by microRNA regulatory networks. Nat Cell Biol 15, 546-554   DOI
55 Sirish P, Lopez JE, Li N et al (2012) MicroRNA profiling predicts a variance in the proliferative potential of cardiac progenitor cells derived from neonatal and adult murine hearts. J Biol Chem 52, 264-272
56 Zhao Y, Samal E and Srivastava D (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436, 214-220   DOI
57 Visvanathan J, Lee S, Lee B, Lee JW and Lee SK (2007) The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev 21, 744-749   DOI
58 Chen JF, Mandel EM, Thomson JM et al (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38, 228-233   DOI
59 Kwon C, Han Z, Olson EN and Srivastava D (2005) Micro-RNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling. Proc Natl Acad Sci U S A 102, 18986-18991   DOI
60 Wong CF and Tellam RL (2008) MicroRNA-26a targets the histone methyltransferase Enhancer of Zeste homolog 2 during myogenesis. J Biol Chem 283, 9836-9843   DOI
61 Sun Q, Zhang Y, Yang G et al (2008) Transforming growth factor-beta-regulated miR-24 promotes skeletal muscle differentiation. Nucleic Acids Res 36, 2690-2699   DOI
62 Smirnova L, Grafe A, Seiler A, Schumacher S, Nitsch R and Wulczyn FG (2005) Regulation of miRNA expression during neural cell specification. Eur J Neurosci 21, 1469-1477   DOI
63 Sluijter JP, van Mil A, van Vliet P et al (2010) MicroRNA-1 and -499 regulate differentiation and proliferation in human-derived cardiomyocyte progenitor cells. Arterioscler Thromb Vasc Biol 30, 859-868   DOI
64 Bruchova H, Yoon D, Agarwal AM, Mendell J and Prchal JT (2007) Regulated expression of microRNAs in normal and polycythemia vera erythropoiesis. Exp Hematol 35, 1657-1667   DOI
65 Wilson KD, Hu S, Venkatasubrahmanyam S et al (2010) Dynamic microRNA expression programs during cardiac differentiation of human embryonic stem cells: role for miR-499. Circ Cardiovasc Genet 3, 426-435   DOI
66 Lee SW, Yang J, Kim SY et al (2015) MicroRNA-26a induced by hypoxia targets HDAC6 in myogenic differentiation of embryonic stem cells. Nucleic Acids Res 43, 2057-2073   DOI
67 Fontana L, Pelosi E, Greco P et al (2007) MicroRNAs 17-5p-20a-106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation. Nat Cell Biol 9, 775-787   DOI
68 Georgantas RW 3rd, Hildreth R, Morisot S et al (2007) CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. Proc Natl Acad Sci U S A 104, 2750-2755   DOI
69 Felli N, Fontana L, Pelosi E et al (2005) MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-downmodulation. Proc Natl Acad Sci U S A 102, 18081-18086   DOI
70 Wang Q, Huang Z, Xue H et al (2008) MicroRNA miR-24 inhibits erythropoiesis by targeting activin type I receptor ALK4. Blood 111, 588-595   DOI
71 Zhou B, Wang S, Mayr C, Bartel DP and Lodish HF (2007) miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc Natl Acad Sci U S A 104, 7080-7085   DOI
72 Chen CZ, Li L, Lodish HF and Bartel DP (2004) Micro-RNAs modulate hematopoietic lineage differentiation. Science 303, 83-86   DOI
73 Buckingham M (2006) Myogenic progenitor cells and skeletal myogenesis in vertebrates. Curr Opin Genet Dev 16, 525-532   DOI
74 Vidigal JA and Ventura A (2015) The biological functions of miRNAs: lessons from in vivo studies. Trends Cell Biol 25, 137-147   DOI
75 Ivey KN, Muth A, Arnold J et al (2008) MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell 2, 219-229   DOI
76 Hansen TB, Jensen TI, Clausen BH et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495, 384-388.   DOI