Browse > Article
http://dx.doi.org/10.14348/molcells.2018.2242

The Role of Hippo Pathway in Cancer Stem Cell Biology  

Park, Jae Hyung (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University)
Shin, Ji Eun (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University)
Park, Hyun Woo (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University)
Abstract
The biological significance and deregulation of the Hippo pathway during organ growth and tumorigenesis have received a surge of interest in the past decade. The Hippo pathway core kinases, MST1/2 and LATS1/2, are tumor suppressors that inhibit the oncogenic nuclear function of YAP/TAZ and TEAD. In addition to earlier studies that highlight the role of Hippo pathway in organ size control, cell proliferation, and tumor development, recent evidence demonstrates its critical role in cancer stem cell biology, including EMT, drug resistance, and self-renewal. Here we provide a brief overview of the regulatory mechanisms of the Hippo pathway, its role in cancer stem cell biology, and promising therapeutic interventions.
Keywords
cancer stem cell; Hippo pathway; metastasis; YAP/TAZ;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Elbediwy, A., Vincent-Mistiaen, Z.I., Spencer-Dene, B., Stone, R.K., Boeing, S., Wculek, S.K., Cordero, J., Tan, E.H., Ridgway, R., Brunton, V.G., et al. (2016). Integrin signalling regulates YAP and TAZ to control skin homeostasis. Development 143, 1674-1687.   DOI
2 Enzo, E,, Santinon, G,, Pocaterra, A,, Aragona, M,, Bresolin, S,, Forcato, M,, Grifoni, D,, Pession, A,, Zanconato, F,, Guzzo, G., et al. (2015). Aerobic glycolysis tunes YAP/TAZ transcriptional activity. EMBO J. 34, 1349-1370.   DOI
3 Cordenonsi, M., Zanconato, F., Azzolin, L., Forcato, M., Rosato, A., Frasson, C., Inui, M., Montagner, M., Parenti, A.R., Poletti, A., et al. (2011). The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 147, 759-772.   DOI
4 Dasari, V.R., Mazack, V., Feng, W., Nash, J., Carey, D.J., and Gogoi, R. (2017). Verteporfin exhibits YAP-independent anti-proliferative and cytotoxic effects in endometrial cancer cells. Oncotarget 8, 28628-28640.
5 Yu, F.X., Zhao, B., Panupinthu, N., Jewell, J.L., Lian, I., Wang, L.H., Zhao, J.G., Yuan, H.X., Tumaneng, K., Li, H.R., et al. (2012). Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 150, 780-791.   DOI
6 Xu, T.A., Wang, W.Y., Zhang, S., Stewart, R.A., and Yu, W. (1995). Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 121, 1053-1063.
7 Yu, F.X., Zhang, Y.F., Park, H.W., Jewell, J.L., Chen, Q., Deng, Y.T., Pan, D.J., Taylor, S.S., Lai, Z.C., and Guan, K.L. (2013). Protein kinase A activates the Hippo pathway to modulate cell proliferation and differentiation. Gene Dev. 27, 1223-1232.   DOI
8 Yu, F.X., Luo, J., Mo, J.S., Liu, G.B., Kim, Y.C., Meng, Z.P., Zhao, L., Peyman, G., Ouyang, H., Jiang, W., et al. (2014). Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP. Cancer Cell 25, 822-830.   DOI
9 Xin, M., Kim, Y., Sutherland, L.B., Murakami, M., Qi, X.X., McAnally, J., Porrello, E.R., Mahmoud, A.I., Tan, W., Shelton, J.M., et al. (2013). Hippo pathway effector Yap promotes cardiac regeneration. Proc. Natl. Acad. Sci. USA 110, 13839-13844.   DOI
10 Wang, Z., Wu, Y., Wang, H., Zhang, Y., Mei, L., Fang, X., Zhang, X., Zhang, F., Chen, H., Liu, Y., et al. (2014). Interplay of mevalonate and Hippo pathways regulates RHAMM transcription via YAP to modulate breast cancer cell motility. Proc. Natl. Acad. Sci. USA 111, E89-98.   DOI
11 Wang, W., Xiao, Z.D., Li, X., Aziz, K.E., Gan, B., Johnson, R.L., and Chen, J. (2015). AMPK modulates Hippo pathway activity to regulate energy homeostasis. Nat. Cell Biol. 17, 490-499.   DOI
12 Wang, C, Zhu, X.Y., Feng, W.W., Yu, Y.H., Jeong, K.J., Guo, W., Lu, Y.L., and Mills, G.B. (2016a). Verteporfin inhibits YAP function through up-regulating 14-3-3 sigma sequestering YAP in the cytoplasm. Am. J. Cancer Res. 6, 27-37.
13 Wang, L., Luo, J.Y., Li, B.C., Tian, X.Y., Chen, L.J., Huang, Y.H., Liu, J., Deng, D., Lau, C.W., Wan, S., et al. (2016b). Integrin-YAP/TAZ-JNK cascade mediates atheroprotective effect of unidirectional shear flow. Nature 540, 579-582.   DOI
14 Yu, F.X., Zhao, B., and Guan, K.L. (2015). Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer. Cell 163, 811-828.   DOI
15 Wang, L., Luo, J.Y., Li, B.C., Tian, X.Y., Chen, L.J., Huang, Y.H., Liu, J., Deng, D., Law, C.W., Wan, S., et al. (2016c). Integrin-YAP/TAZ-JNK cascade mediates atheroprotective effect of unidirectional shear flow. Nature 540, 579-582.   DOI
16 Wang, Z., Liu, P., Zhou, X., Wang, T.X., Feng X., Sun, Y.P., Xiong, Y., Yuan, H.X., and Guan, K.L. (2017). Endothelin promotes colorectal tumorigenesis by activating YAP/TAZ. Cancer Res. 77, 2413-2423.   DOI
17 Wu, S., Huang, J.B., Dong, J.X., and Pan, D.J. (2003). hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell 114, 445-456.   DOI
18 Tung, S.L., Huang, W.C., Hsu, F.C., Yang, Z.P., Jang, T.H., Chang, J.W., Chuang, C.M., Lai, C.R., and Wang, L.H. (2017). miRNA-34c-5p inhibits amphiregulin-induced ovarian cancer stemness and drug resistance via downregulation of the AREG-EGFR-ERK pathway. Oncogenesis 6, e3226.
19 Zhao, Y.L., Khanal, P., Savage, P., She, Y.M., Cyr, T.D., and Yang, X.L. (2014). YAP-Induced Resistance of Cancer Cells to Antitubulin Drugs Is Modulated by a Hippo-Independent Pathway. Cancer Res 74, 4493-4503.   DOI
20 Zhou, X., Wang, S.Y., Wang, Z., Feng, X., Liu, P., Lv, X.B., Li, F.L., Yu, F.X., Sun, Y.P., Yuan, H.X., et al. (2015). Estrogen regulates Hippo signaling via GPER in breast cancer. J. Clin. Invest. 125, 2123-2135.   DOI
21 Zanconato, F., Forcato, M., Battilana, G., Azzolin, L., Quaranta, E., Bodega, B., Rosato, A., Bicciato, S., Cordenonsi, M., and Piccolo, S. (2015). Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat. Cell Biol. 17, 1218-1227.   DOI
22 Zanconato, F., Cordenonsi, M., and Piccolo, S. (2016). YAP/TAZ at the roots of cancer. Cancer Cell 29, 783-803.   DOI
23 Zhang, H., Liu, C.Y., Zha, Z.Y., Zhao, B., Yao, J., Zhao, S., Xiong, Y., Lei, Q.Y., and Guan, K.L. (2009a). TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition. J. Biol. Chem. 284, 13355-13362.   DOI
24 Zhang, J.M., Ji, J.Y., Yu, M., Overholtzer, M., Smolen, G.A., Wang, R., Brugge, J.S., Dyson, N.J., and Haber, D.A. (2009b). YAP-dependent induction of amphiregulin identifies a non-cell-autonomous component of the Hippo pathway. Nat. Cell Biol. 11, 1444-U1134.   DOI
25 Zhao, B., Li, L., Wang, L., Wang, C.Y., Yu, J.D., and Guan, K.L. (2012). Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Gene Dev. 26, 54-68.   DOI
26 Tsai, H.C., Huang, C.Y., Su, H.L., and Tang, C.H. (2014). CTGF increases drug resistance to paclitaxel by upregulating survivin expression in human osteosarcoma cells. Biochim. Biophys. Acta 1843, 846-854.   DOI
27 Wu, H.T., Wei, L.Y., Fan, F.Q., Ji, S.Y., Zhang, S.H., Geng, J., Hong, L.X., Fan, X., Chen, Q.H., Tian, J., et al. (2015). Integration of Hippo signalling and the unfolded protein response to restrain liver overgrowth and tumorigenesis. Nat. Commun. 6, 6239.   DOI
28 Strano, S., Munarriz, E., Rossi, M., Castagnoli, L., Shaul, Y., Sacchi, A., Oren, M., Sudol, M., Cesareni, G., and Blandino, G. (2001). Physical interaction with Yes-associated protein enhances p73 transcriptional activity. J. Biol. Chem. 276, 15164-15173.   DOI
29 Tang, Y., Feinberg, T., Keller, E.T., Li, X.Y., and Weiss, S.J. (2016). Snail/Slug binding interactions with YAP/TAZ control skeletal stem cell self-renewal and differentiation. Nat. Cell Biol. 18, 917-929.   DOI
30 Tumaneng, K., Schlegelmilch, K., Russell, R.C., Yimlamai, D., Basnet, H., Mahadevan, N., Fitamant, J., Bardeesy, N., Camargo, F.D., and Guan, K.L. (2012). YAP mediates crosstalk between the Hippo and PI(3)K-TOR pathways by suppressing PTEN via miR-29. Nat. Cell Biol. 14, 1322-1329.   DOI
31 Seo, E., Basu-Roy, U., Gunaratne, P.H., Coarfa, C., Lim, D.S., Basilico, C., and Mansukhani, A. (2013). SOX2 regulates YAP1 to maintain stemness and determine cell fate in the osteo-adipo lineage. Cell Rep. 3, 2075-2087.   DOI
32 Varelas, X., Sakuma, R., Samavarchi-Tehrani, P., Peerani, R., Rao, B.M., Dembowy, J., Yaffe, M.B., Zandstra, P.W., and Wrana, J.L. (2008). TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat. Cell Biol. 10, 837-848.   DOI
33 Varelas, X., Samavarchi-Tehrani, P., Narimatsu, M., Weiss, A., Cockburn, K., Larsen, B.G., Rossant, J., and Wrana, J.L. (2010). The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-beta-SMAD pathway. Dev. Cell 19, 831-844.   DOI
34 Wang, M.Y., Chen, P.S., Prakash, E., Hsu, H.C., Huang, H.Y., Lin, M.T., Chang, K.J., and Kuo, M.L. (2009). Connective tissue growth factor confers drug resistance in breast cancer through concomitant up-regulation of Bcl-xL and cIAP1. Cancer Res. 69, 3482-3491.   DOI
35 Serrano, I., McDonald, P.C., Lock, F., Muller, W.J., and Dedhar, S. (2013). Inactivation of the Hippo tumour suppressor pathway by integrin-linked kinase. Nat. Commun. 4, 2976.   DOI
36 Shao, D., Zhai, P.Y., Del Re, D.P., Sciarretta, S., Yabuta, N., Nojima, H., Lim, D.S., Pan, D.J., and Sadoshima, J. (2014a). A functional interaction between Hippo-YAP signalling and FoxO1 mediates the oxidative stress response. Nat. Commun. 5, 3315.   DOI
37 Qin, H., Hejna, M., Liu, Y., Percharde, M., Wossidlo, M., Blouin, L., Durruthy-Durruthy, J., Wong, P., Qi, Z., Yu, J., et al. (2016). YAP induces human naive pluripotency. Cell Rep. 14, 2301-2312.   DOI
38 Park, H.W., and Guan, K.L. (2013). Regulation of the Hippo pathway and implications for anticancer drug development. Trends Pharmacol. Sci. 34, 581-589.   DOI
39 Park, H.W., Kim, Y.C., Yu, B., Moroishi, T., Mo, J.S., Plouffe, S.W., Meng, Z.P., Lin, K.C., Yu, F.X., Alexander, C.M., et al. (2015). Alternative Wnt Signaling Activates YAP/TAZ. Cell 162, 780-794.   DOI
40 Porazinski, S., Wang, H.J., Asaoka, Y., Behrndt, M., Miyamoto, T., Morita, H., Hata, S., Sasaki, T., Krens, S.F.G., Osada, Y., et al. (2015). YAP is essential for tissue tension to ensure vertebrate 3D body shape. Nature 521, 217-221.   DOI
41 Schlegelmilch, K., Mohseni, M., Kirak, O., Pruszak, J., Rodriguez, J.R., Zhou, D., Kreger, B.T., Vasioukhin, V., Avruch, J., Brummelkamp, T.R., et al. 2011. Yap1 acts downstream of alpha-catenin to control epidermal proliferation. Cell 144, 782-795.   DOI
42 Meng, Z.P., Moroishi, T., and Guan, K.L. (2016). Mechanisms of Hippo pathway regulation. Gene Dev. 30, 1-17.   DOI
43 Zhao, B., Ye, X., Yu, J., Li, L., Li, W., Li, S., Yu, J., Lin, J.D., Wang, C.Y., Chinnaiyan, A.M., et al. (2008a). TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 22, 1962-1971.   DOI
44 Moroishi, T., Hayashi, T., Pan, W.W., Fujita, Y., Holt, M.V., Qin, J., Carson, D.A., and Guan, K.L. (2016). The Hippo pathway kinases LATS1/2 suppress cancer immunity. Cell 167, 1525-1539.   DOI
45 Nishioka, N., Inoue, K., Adachi, K., Kiyonari, H., Ota, M., Ralston, A., Yabuta, N., Hirahara, S., Stephenson, R.O., Ogonuki, N., et al. (2009). The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev. Cell 16, 398-410.   DOI
46 Noland, C.L., Gierke, S., Schnier, P.D., Murray, J., Sandoval, W.N., Sagolla, M., Dey, A., Hannoush, R.N., Fairbrother, W.J., and Cunningham, C.N. (2016). Palmitoylation of TEAD transcription factors is required for their stability and function in Hippo pathway signaling. Structure 24, 179-186.   DOI
47 O'Connell, M.P., Marchbank, K., Webster, M.R., Valiga, A.A., Kaur, A., Vultur, A., Li, L., Herlyn, M., Villanueva, J., Liu, Q., et al. (2013). Hypoxia induces phenotypic plasticity and therapy resistance in melanoma via the tyrosine kinase receptors ROR1 and ROR2. Cancer Discov. 3, 1378-1393.   DOI
48 Zhao, B., Wei, X., Li, W., Udan, R.S., Yang, Q., Kim, J., Xie, J., Ikenoue, T., Yu, J., Li, L., et al. (2007). Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Gene Dev. 21, 2747-2761.   DOI
49 Zhao, B., Ye, X., Yu, J.D., Li, L., Li, W.Q., Li, S.M., Yu, J.J., Lin, J.D., Wang, C.Y., Chinnaiyan, A.M., et al. (2008b). TEAD mediates YAPdependent gene induction and growth control. Gene Dev. 22, 1962-1971.   DOI
50 Miller, E., Yang, J.Y., DeRan, M., Wu, C.L., Su, A.I., Bonamy, G.M.C., Liu, J., Peters, E.C., and Wu, X. (2012). Identification of Serum-Derived Sphingosine-1-Phosphate as a Small Molecule Regulator of YAP. Chem. Biol. 19, 955-962.   DOI
51 Mo, J.S., Yu, F.X., Gong, R., Brown, J.H., and Guan, K.L. (2012). Regulation of the Hippo-YAP pathway by protease-activated receptors (PARs). Gene Dev. 26, 2138-2143.   DOI
52 Mo, J.S., Meng, Z., Kim, Y.C., Park, H.W., Hansen, C.G., Kim, S, Lim, D.S., and Guan, K.L. (2015). Cellular energy stress induces AMPKmediated regulation of YAP and the Hippo pathway. Nat. Cell Biol. 17, 500-510.   DOI
53 Chen, H.H., Mullett, S.J., and Stewart, A.F. (2004). Vgl-4, a novel member of the vestigial-like family of transcription cofactors, regulates alpha1-adrenergic activation of gene expression in cardiac myocytes. J. Biol. Chem. 279, 30800-30806.   DOI
54 Busser, B., Sancey, L., Josserand, V., Niang, C., Favrot, M.C., Coll, J.L., and Hurbin, A. (2010). Amphiregulin Promotes BAX Inhibition and Resistance to Gefitinib in Non-small-cell Lung Cancers. Mol. Ther. 18, 528-535.   DOI
55 Cai, J., Maitra, A., Anders, R.A., Taketo, M.M., and Pan, D. (2015). beta-Catenin destruction complex-independent regulation of Hippo-YAP signaling by APC in intestinal tumorigenesis. Genes Dev. 29, 1493-1506.   DOI
56 Chan, P., Han, X., Zheng, B.H., Deran, M., Yu, J.Z., Jarugumilli, G.K., Deng, H., Pan, D.J., Luo, X.L., and Wu, X. (2016). Autopalmitoylation of TEAD proteins regulates transcriptional output of the Hippo pathway. Nat. Chem. Biol 12, 282-+.   DOI
57 Anastas, J.N., Kulikauskas, R.M., Tamir, T., Rizos, H., Long, G.V., von Euw, E.M., Yang, P.T., Chen, H.W., Haydu, L., Toroni, R.A., et al. (2014). WNT5A enhances resistance of melanoma cells to targeted BRAF inhibitors. J. Clin. Invest. 124, 2877-2890.   DOI
58 Cheng, H.Y., Zhang, Z.F., Rodriguez-Barrueco, R., Borczuk, A., Liu, H.J., Yu, J.Y., Silva, J.M., Cheng, S.K., Perez-Soler, R., and Halmos, B. (2016). Functional genomics screen identifies YAP1 as a key determinant to enhance treatment sensitivity in lung cancer cells. Oncotarget 7, 28976-28988.
59 Ciamporcero, E., Shen, H., Ramakrishnan, S., Ku, S.Y., Chintala, S., Shen, L., Adelaiye, R., Miles, K.M., Ullio, C., Pizzimenti, S., et al. (2016). YAP activation protects urothelial cell carcinoma from treatment-induced DNA damage. Oncogene 35, 1541-1553.   DOI
60 Cizkova, M., Cizeron-Clairac, G., Vacher, S., Susini, A., Andrieu, C., Lidereau, R., and Bieche, I. (2010). Gene expression profiling reveals new aspects of PIK3CA mutation in ERalpha-positive breast cancer: major implication of the Wnt signaling pathway. Plos One 5.
61 Aragona, M., Panciera, T., Manfrin, A., Giulitti, S., Michielin, F., Elvassore, N., Dupont, S., and Piccolo, S. (2013). A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154, 1047-1059.   DOI
62 Azzolin, L., Zanconato, F., Bresolin, S., Forcato, M., Basso, G., Bicciato, S., Cordenonsi, M., and Piccolo, S. (2012). Role of TAZ as Mediator of Wnt Signaling. Cell 151, 1443-1456.   DOI
63 Azzolin, L., Panciera, T., Soligo, S., Enzo, E., Bicciato, S., Dupont, S., Bresolin, S., Frasson, C., Basso, G., Guzzardo, V., et al. (2014). YAP/TAZ incorporation in the beta-catenin destruction complex orchestrates the Wnt response. Cell 158, 157-170.   DOI
64 Yang, S.P., Zhang, L., Liu, M., Chong, R., Ding, S.J., Chen, Y.H., and Dong, J.X. (2013). CDK1 phosphorylation of YAP promotes mitotic defects and cell motility and is essential for neoplastic transformation. Cancer Res. 73, 6722-6733.   DOI
65 Zhang, W.J., Gao, Y.J., Li, P.X., Shi, Z.B., Guo, T., Li, F., Han, X.K., Feng, Y., Zheng, C., Wang, Z.Y., et al. (2014). VGLL4 functions as a new tumor suppressor in lung cancer by negatively regulating the YAP-TEAD transcriptional complex. Cell Res. 24, 331-343.   DOI
66 Zhang, L., Yang, S.P., Chen, X.C., Stauffer, S., Yu, F., Lele, S.M., Fu, K., Datta, K., Palermo, N., Chen, Y.H., et al. (2015). The Hippo Pathway Effector YAP Regulates Motility, Invasion, and Castration-Resistant Growth of Prostate Cancer Cells. Mol. Cell Biol. 35, 1350-1362.   DOI
67 Zhang, K., Hu, Z., Qi, H., Shi, Z., Chang, Y., Yao, Q., Cui, H., Zheng, L., Han, Y., Han, X., et al. (2016). G-protein-coupled receptors mediate omega-3 PUFAs-inhibited colorectal cancer by activating the Hippo pathway. Oncotarget 7, 58315-58330.
68 Yimlamai, D., Christodoulou, C., Galli, G.G., Yanger, K., Pepe-Mooney, B., Gurung, B., Shrestha, K., Cahan, P., Stanger, B.Z., and Camargo, F.D. (2014). Hippo pathway activity influences liver cell fate. Cell 157, 1324-1338.   DOI
69 Yin, D., Chen, W., O'Kelly, J., Lu, D., Ham, M., Doan, N.B., Xie, D., Wang, C., Vadgama, J., Said, J.W., et al. 2010. Connective tissue growth factor associated with oncogenic activities and drug resistance in glioblastoma multiforme. Int. J. Cancer 127, 2257-2267.   DOI
70 Shao, D.D., Xue ,W., Krall, E.B., Bhutkar, A., Piccioni, F., Wang, X., Schinzel, A.C., Sood, S., Rosenbluh, J., Kim, J.W., et al. (2014b). KRAS and YAP1 converge to regulate EMT and tumor survival. Cell 158, 171-184.   DOI
71 Shibue, T., and Weinberg, R.A. (2017). EMT, CSCs, and drug resistance, the mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. 14, 611-629.   DOI
72 Song, S.M, Ajani, J.A., Honjo, S., Maru, D.M., Chen, Q.R., Scott, A.W., Heallen, T.R., Xiao, L.C., Hofstetter, W.L., Weston, B., et al. (2014). Hippo coactivator YAP1 upregulates SOX9 and endows esophageal cancer cells with stem-like properties. Cancer Res. 74, 4170-4182.   DOI
73 Sorrentino, G., Ruggeri, N., Specchia, V., Cordenonsi, M., Mano, M., Dupont, S., Manfrin, A., Ingallina, E., Sommaggio, R., Piazza, S., et al. (2014). Metabolic control of YAP and TAZ by the mevalonate pathway. Nat. Cell Biol. 16, 357-366.   DOI
74 Sorrentino, G., Ruggeri, N., Zannini, A., Ingallina, E., Bertolio, R., Marotta, C., Neri, C., Cappuzzello, E., Forcato, M., Rosato, A., et al. (2017). Glucocorticoid receptor signalling activates YAP in breast cancer. Nat. Commun. 8, 14073.   DOI
75 Benham-Pyle, B.W., Pruitt, B.L., and Nelson, W.J. (2015). Cell adhesion. Mechanical strain induces E-cadherin-dependent Yap1 and beta-catenin activation to drive cell cycle entry. Science 348, 1024-1027.   DOI
76 Barry, E.R., Morikawa, T., Butler, B.L., Shrestha, K., de la Rosa, R., Yan, K.S., Fuchs, C.S., Magness, S.T., Smits, R., Ogino, S., et al. (2013). Restriction of intestinal stem cell expansion and the regenerative response by YAP. Nature 493, 106-110.
77 Bartucci, M., Dattilo, R., Moriconi, C., Pagliuca, A., Mottolese, M., Federici, G., Di Benedetto, A., Todaro, M., Stassi, G., Sperati, F., et al. (2015). TAZ is required for metastatic activity and chemoresistance of breast cancer stem cells. Oncogene 34, 681-690.   DOI
78 Basu-Roy, U., Bayin, N.S., Rattanakorn, K., Han, E., Placantonakis, D.G., Mansukhani, A., and Basilico, C. (2015). Sox2 antagonizes the Hippo pathway to maintain stemness in cancer cells. Nat. Commun. 6, 6411.   DOI
79 Lin, L.P., Sabnis, A.J., Chan, E., Olivas, V., Cade, L., Pazarentzos, E., Asthana, S., Neel, D., Yan, J.J., Lu, X.Y., et al. (2015). The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies. Nat. Genet. 47, 250-256.   DOI
80 Lin, K.C., Moroishi, T., Meng, Z.P., Jeong, H.S., Plouffe, S.W., Sekido, Y., Han, J.H., Park, H.W., and Guan, K.L. (2017). Regulation of Hippo pathway transcription factor TEAD by p38 MAPK-induced cytoplasmic translocation. Nat. Cell Biol. 19, 996-1002.   DOI
81 Liu, G., Yu, F.X., Kim, Y.C., Meng, Z., Naipauer, J., Looney, D.J., Liu, X., Gutkind, J.S., Mesri, E,A., and Guan, K.L. (2015). Kaposi sarcomaassociated herpesvirus promotes tumorigenesis by modulating the Hippo pathway. Oncogene 34, 3536-3546.   DOI
82 Kim, T., Yang, S.J., Hwang, D., Song, J., Kim, M., Kim, S.K., Kang, K., Ahn, J., Lee, D., Kim, M.Y., et al. (2015). A basal-like breast cancerspecific role for SRF-IL6 in YAP-induced cancer stemness. Nat. Commun. 6, 10186.   DOI
83 Liu-Chittenden, Y., Huang, B., Shim, J.S., Chen, Q., Lee, S.J., Anders, R.A., Liu, J.O., and Pan, D.J. (2012). Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Gene Dev. 26, 1300-1305.   DOI
84 Ma, B., Chen, Y., Chen, L., Cheng, H.C., Mu, C.L., Li, J., Gao, R.Z., Zhou, C.Q., Cao, L., Liu, J.H., et al. (2015). Hypoxia regulates Hippo signalling through the SIAH2 ubiquitin E3 ligase. Nat. Cell Biol. 17, 95-103.
85 Mao, B., Hu, F., Cheng, J., Wang, P., Xu, M., Yuan, F., Meng, S., Wang, Y., Yuan, Z., and Bi, W. (2014). SIRT1 regulates YAP2-mediated cell proliferation and chemoresistance in hepatocellular carcinoma. Oncogene 33, 1468-1474.   DOI
86 Meng, Z., Moroishi, T., Mottier-Pavie, V., Plouffe, S.W., Hansen, C.G., Hong, A.W., Park, H.W., Mo, J.S., Lu, W., Lu, S., et al. (2015). MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway. Nat. Commun. 6, 8357.   DOI
87 Liang, N., Zhang, C., Dill, P., Panasyuk, G., Pion, D., Koka, V., Gallazzini, M., Olson, E.N., Lam, H., Henske, E.P., et al. (2014). Regulation of YAP by mTOR and autophagy reveals a therapeutic target of tuberous sclerosis complex. J. Exp. Med. 211, 2249-2263.   DOI
88 Kim, M.H., Kim, J., Hong, H., Lee, S.H., Lee, J,K., Jung, E., and Kim, J. (2016). Actin remodeling confers BRAF inhibitor resistance to melanoma cells through YAP/TAZ activation. EMBO J. 35, 462-478.   DOI
89 Kim, W., Khan, S.K., Gvozdenovic-Jeremic, J., Kim, Y., Dahlman, J., Kim, H., Park, O., Ishitani, T., Jho, E.H., Gao, B., et al. (2017). Hippo signaling interactions with Wnt/beta-catenin and Notch signaling repress liver tumorigenesis. J. Clin. Invest. 127, 137-152.
90 O'Hayre, M., Vazquez-Prado, J., Kufareva, I., Stawiski, E.W., Handel, T.M., Seshagiri, S., and Gutkind, J.S. (2013). The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer. Nat. Rev. Cancer 13, 412-424.   DOI
91 Ota, M., and Sasaki, H. (2008). Mammalian Tead proteins regulate cell proliferation and contact inhibition as transcriptional mediators of Hippo signaling. Development 135, 4059-4069.   DOI
92 Overholtzer, M., Zhang, J., Smolen, G.A., Muir, B., Li, W., Sgroi, D.C., Deng, C.X., Brugge, J.S., and Haber, D.A. (2006). Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc. Natl. Acad. Sci. USA 103, 12405-12410.   DOI
93 Jang, E.J., Jeong, H., Han, K.H., Kwon, H.M., Hong, J.H., and Hwang, E.S. (2012). TAZ suppresses NFAT5 activity through tyrosine phosphorylation. Mol. Cell Biol. 32, 4925-4932.   DOI
94 Koontz, L.M., Liu-Chittenden, Y., Yin, F., Zheng, Y., Yu, J., Huang, B., Chen, Q., Wu, S., and Pan, D. (2013). The Hippo effector Yorkie controls normal tissue growth by antagonizing scalloped-mediated default repression. Dev. Cell 25, 388-401.   DOI
95 Lamar, J.M., Stern, P., Liu, H., Schindler, J.W., Jiang, Z.G., and Hynes, R.O. (2012). The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proc. Natl. Acad. Sci. USA 109, E2441-E2450.   DOI
96 Lee, H.J., Diaz, M.F., Price, K.M., Ozuna, J.A., Zhang, S., Sevick-Muraca, E.M., Hagan, J.P., and Wenzel, P.L. (2017). Fluid shear stress activates YAP1 to promote cancer cell motility. Nat. Commun. 8, 14122.   DOI
97 Lehmann, W., Mossmann, D., Kleemann, J., Mock, K., Meisinger, C., Brummer, T., Herr, R., Brabletz, S., Stemmler, M.P., and Brabletz, T. (2016). ZEB1 turns into a transcriptional activator by interacting with YAP1 in aggressive cancer types. Nat. Commun. 7, 10498.   DOI
98 Lei, Q.Y., Zhang, H., Zhao, B., Zha, Z.Y., Bai, F., Pei, X.H., Zhao, S., Xiong, Y., and Guan, K.L. (2008). TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Mol. Cell Biol. 28, 2426-2436.   DOI
99 Hong, A.W., Meng, Z.P., Yuan, H.X., Plouffe, S.W., Moon, S., Kim, W., Jho, E.H., Guan, K.L. 2017. Osmotic stress-induced phosphorylation by NLK at Ser128 activates YAP. EMBO Rep. 18, 72-86.   DOI
100 Huang, J.B., Wu, S., Barrera, J., Matthews, K., and Pan, D.J. (2005). The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila homolog of YAP. Cell 122, 421-434.   DOI
101 Jiao, S., Wang, H.Z., Shi, Z.B., Dong, A.M., Zhang, W.J., Song, X.M., He, F., Wang, Y.C., Zhang, Z.Z., Wang, W.J., et al. (2014). A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. Cancer Cell 25, 166-180.   DOI
102 Feng, X.D., Degese, M.S., Iglesias-Bartolome, R., Vaque, J.P., Molinolo, A.A., Rodrigues, M., Zaidi, M.R., Ksander, B.R., Merlino, G., Sodhi, A., et al. (2014). Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell 25, 831-845.   DOI
103 Kim, N.G., and Gumbiner, B.M. (2015). Adhesion to fibronectin regulates Hippo signaling via the FAK-Src-PI3K pathway. J. Cell Biol. 210, 503-515.   DOI
104 Kim, N.G., Koh, E., Chen, X., and Gumbiner, B.M. (2011). E-cadherin mediates contact inhibition of proliferation through Hippo signalingpathway components. Proc. Natl. Acad. Sci. USA 108, 11930-11935.   DOI
105 Kim, M., Kim, M., Lee, S., Kuninaka, S., Saya, H., Lee, H., Lee, S., and Lim, D.S. (2013). cAMP/PKA signalling reinforces the LATS-YAP pathway to fully suppress YAP in response to actin cytoskeletal changes. EMBO J. 32, 1543-1555.   DOI
106 Hansen, C.G., Ng, Y.L.D., Lam, W.L.M., Plouffe, S.W., and Guan, K.L. (2015). The Hippo pathway effectors YAP and TAZ promote cell growth by modulating amino acid signaling to mTORC1. Cell Res. 25, 1299-1313.   DOI
107 Harvey, K.F., Pfleger, C.M., and Hariharan, I.K. (2003). The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 114, 457-467.   DOI
108 Feng, X., Liu, P., Zhou, X., Li, M.T., Li, F.L., Wang, Z., Meng, Z.P., Sun, Y.P., Yu, Y, Xiong, Y., et al. (2016). Thromboxane A2 activates YAP/TAZ protein to induce vascular smooth muscle cell proliferation and migration. J. Biol. Chem. 291, 18947-18958.   DOI
109 Fernandez, L.A., Squatrito, M., Northcott, P., Awan, A., Holland, E.C., Taylor, M.D., Nahle, Z., and Kenney, A.M. (2012). Oncogenic YAP promotes radioresistance and genomic instability in medulloblastoma through IGF2-mediated Akt activation. Oncogene 31, 1923-1937.   DOI
110 Ganem, N.J., Cornils, H., Chiu, S.Y., O'Rourke, K.P., Arnaud, J., Yimlamai, D., Thery, M., Camargo, F.D., and Pellman, D. (2014). Cytokinesis failure triggers hippo tumor suppressor pathway activation. Cell 158, 833-848.   DOI
111 Gong, R., Hong, A.W., Plouffe, S.W., Zhao, B., Liu, G.B., Yu, F.X., Xu, Y.H., and Guan, K.L. (2015). Opposing roles of conventional and novel PKC isoforms in Hippo-YAP pathway regulation. Cell Res. 25, 985-988.   DOI
112 Gregorieff, A., Liu, Y., Inanlou, M.R., Khomchuk, Y., and Wrana, JL. (2015). Yap-dependent reprogramming of Lgr5(+) stem cells drives intestinal regeneration and cancer. Nature 526, 715-718.   DOI
113 Gronich, N., and Rennert, G. (2013). Beyond aspirin-cancer prevention with statins, metformin and bisphosphonates. Na. Re. Clin. Oncol. 10, 625-642.   DOI
114 Guo, Y., Cui, J., Ji, Z., Cheng, C., Zhang, K., Zhang, C., Chu, M., Zhao, Q., Yu, Z., Zhang, Y., et al. (2017). miR-302/367/LATS2/YAP pathway is essential for prostate tumor-propagating cells and promotes the development of castration resistance. Oncogene 36, 6336-6347.   DOI
115 DeRan M, Yang J, Shen CH, Peters EC, Fitamant J, Chan P, Hsieh M, Zhu S, Asara JM, Zheng B et al. (2014). Energy stress regulates hippo-YAP signaling involving AMPK-mediated regulation of angiomotinlike 1 protein. Cell Rep 9, 495-503.   DOI
116 Dupont, S., Morsut, L., Aragona, M., Enzo, E., Giulitti, S., Cordenonsi, M., Zanconato, F., Le Digabel, J., Forcato, M., Bicciato, S., et al. (2011). Role of YAP/TAZ in mechanotransduction. Nature 474, 179-U212.   DOI
117 Dong, J., Feldmann, G., Huang, J., Wu, S., Zhang, N., Comerford, S.A., Gayyed, M.F., Anders, R.A., Maitra, A., and Pan, D. (2007). Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130, 1120-1133.   DOI