• Title/Summary/Keyword: Cell proliferation and growth

Search Result 1,578, Processing Time 0.028 seconds

Nuclear Imaging of Cellular Proliferation (핵의학적 세포증식 영상)

  • Yeo, Jeong-Seok
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.2
    • /
    • pp.198-204
    • /
    • 2004
  • Tumor cell proliferation is considered to be a useful prognostic indicator of tumor aggressiveness and tumor response to therapy but in vitro measurement of individual proliferation is complex and tedious work. PET imaging provides a noninvasive approach to measure tumor growth rate in situ. Early approaches have used $^{18}F$-FDG or methionine to monitor proliferation status. These 2 tracers detect changes in glucose and amino acid metabolism, respectively, and therefore provide only an indirect measure of proliferation status. More recent studies have focused on DNA synthesis itself as a marker of cell proliferation. Cell lines and tissues with a high proliferation rate require high rates of DNA synthesis. $[^{11}C]Thymidine$ was the first radiotracer for noninvasive imaging of tumor proliferation. The short half-life of $^{11}C$ and rapid metabolism of $[^{11}C]Thymidine$ in vivo make the radiotracer less suitable for routing use. Halogenated thymidine analogs such as 5-iodo-2-deoxyuridine (IUdR) can be successfully used as cell proliferation markers for in vitro studies because these compounds are rapidly incorporated into newly synthesized DNA. IUdR has been evaluated as a potential in vivo tracer in nuclear medicing but the image qualify and the calculation of proliferation rates are impaired by its rapid in vivo degradation. Hence, the thymidine analog $3'-deoxy-3'-^{18}F-fluorothymidine$ (FLT) was recently introduced as a stable proliferation marker with a suitable nuclide half-life and stable in vivo. $[^{18}F]FLT$ is phosphorylated to 3-fluorothymidine monophosphate by thymidine kinase 1 and reflects thymidine kinase 1 activity in proliferating cell. $[^{18}F]FLT$ PET is feasible in clincal use and well correlates with cellular proliferation. Choline is a precursor for the biosynthesis of phospholipids (in particular, phosphatidylcholine), which is the essential component of all eukaryotic cell membranes and $[^{11}C]choline$, which is a new marker for cellular proliferation.

Sp1 Decoy Oligodeoxynucleotides Inhibit Serum-induced Mesangial Cell Proliferation (Sp1 Decoy Oligodeoxynucleotides에 의한 사구체 혈관간세포 증식억제 효과)

  • Chae Young Mi;Kim Sung Young;Park Kwan Kyu;Chang Young Chae
    • KSBB Journal
    • /
    • v.19 no.5
    • /
    • pp.335-340
    • /
    • 2004
  • Mesangial expansion caused by cell proliferation and glomerular extracellular matrix accumulation is one of the earliest renal abnormalties observed at the onset of hyperglycemia in diabetes mellitus. Transcription factor Sp1 is implicated in the transcriptional regulation of a wide range of genes participating in cell proliferation, and is assumed to play an essential role in mesangial expansion, transforming growth factor (TGF)-$\beta$1, plasminogen activator inhibitor (PAI)-1. We have generated a phosphorothioated double-stranded Sp1-decoy oligodeoxynucleotide that effectively blocks Sp1 binding to the promoter region for transcriptional regulation of TGF-$\beta$1 and PAI-1. The Sp1 decoy oligodeoxynucleotide suppressed transcription of these cytokines and proliferation of primary rat mesangial cells in response to serum stimulation. These results suggest that the Sp1 decoy oligodeoxynucleotide could bea powerful tool in preventing the pathogenesis of renal hypertrophy.

Exosomes Secreted by Toxoplasma gondii-Infected L6 Cells: Their Effects on Host Cell Proliferation and Cell Cycle Changes

  • Kim, Min Jae;Jung, Bong-Kwang;Cho, Jaeeun;Song, Hyemi;Pyo, Kyung-Ho;Lee, Ji Min;Kim, Min-Kyung;Chai, Jong-Yil
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.2
    • /
    • pp.147-154
    • /
    • 2016
  • Toxoplasma gondii infection induces alteration of the host cell cycle and cell proliferation. These changes are not only seen in directly invaded host cells but also in neighboring cells. We tried to identify whether this alteration can be mediated by exosomes secreted by T. gondii-infected host cells. L6 cells, a rat myoblast cell line, and RH strain of T. gondii were selected for this study. L6 cells were infected with or without T. gondii to isolate exosomes. The cellular growth patterns were identified by cell counting with trypan blue under confocal microscopy, and cell cycle changes were investigated by flow cytometry. L6 cells infected with T. gondii showed decreased proliferation compared to uninfected L6 cells and revealed a tendency to stay at S or G2/M cell phase. The treatment of exosomes isolated from T. gondii-infected cells showed attenuation of cell proliferation and slight enhancement of S phase in L6 cells. The cell cycle alteration was not as obvious as reduction of the cell proliferation by the exosome treatment. These changes were transient and disappeared at 48 hr after the exosome treatment. Microarray analysis and web-based tools indicated that various exosomal miRNAs were crucial for the regulation of target genes related to cell proliferation. Collectively, our study demonstrated that the exosomes originating from T. gondii could change the host cell proliferation and alter the host cell cycle.

Effects of Sodium Valproate on the Growth of Human Ovarian Cancer Cell Line HO8910

  • Yan, Hong-Chao;Zhang, Jie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6429-6433
    • /
    • 2012
  • To explore a possible new treatment for human ovarian cancer, we studied the effects of sodium valproate on the growth of the HO8910 human cell line. HO8910 cells were cultured in vitro and treated with different concentrations of sodium valproate. Cell proliferation, cell cycling, and apoptosis were measured by flow cytometry, cell morphology under a microscope, and expression levels of WWOX and P27 by Western blotting and RT-PCR. Tumor xenografts were established to determine in vivo effects of sodium valproate. Our results showed that cell proliferation was decreased with increasing concentration of sodium valproate, with features of cytoplasmic retraction and floating cells. Moreover, cell cycle analysis revealed a higher apoptosis rate and $G_0/G_1$ phase in the sodium valproate experimental group than in the control group. In addition, protein expression levels of WWOX and P27 were elevated. Importantly, sodium valproate decreased in vivo xenograft tumor burden and up-regulated WWOX and P27 expression in nude mice. In conclusion, sodium valproate might play a role in inhibition and control of ovarian cancer cell line HO8910 by inhibiting cell proliferation, interfering with the cell cycle and promoting apoptosis, so that it may be effective in the clinical treatment of ovarian cancer.

FAM46B inhibits cell proliferation and cell cycle progression in prostate cancer through ubiquitination of β-catenin

  • Liang, Tao;Ye, Xuxiao;Liu, Yuanyuan;Qiu, Xinkai;Li, Zuowei;Tian, Binqiang;Yan, Dongliang
    • Experimental and Molecular Medicine
    • /
    • v.50 no.12
    • /
    • pp.8.1-8.12
    • /
    • 2018
  • FAM46B is a member of the family with sequence similarity 46. Little is known about the expression and functional role (s) of FAM46B in prostate cancer (PC). In this study, the expression of FAM46B expression in The Cancer Genome Atlas, GSE55945, and an independent hospital database was measured by bioinformatics and real-time PCR analysis. After PC cells were transfected with siRNA or a recombinant vector in the absence or presence of a ${\beta}$-catenin signaling inhibitor (XAV-939), the expression levels of FAM46B, C-myc, Cyclin D1, and ${\beta}$-catenin were measured by western blot and realtime PCR. Cell cycle progression and cell proliferation were measured by flow cytometry and the CCK-8 assay. The effects of FAM46B on tumor growth and protein expression in nude mice with PC tumor xenografts were also measured. Our results showed that FAM46B was downregulated but that ${\beta}$-catenin was upregulated in patients with PC. FAM46B silencing promoted cell proliferation and cell cycle progression in PC, which were abrogated by XAV-939. Moreover, FAM46B overexpression inhibited PC cell cycle progression and cell proliferation in vitro and tumor growth in vivo. FAM46B silencing promoted ${\beta}$-catenin protein expression through the inhibition of ${\beta}$-catenin ubiquitination. Our data clearly show that FAM46B inhibits cell proliferation and cell cycle progression in PC through ubiquitination of ${\beta}$-catenin.

Mammalian target of rapamycin inhibitors for treatment in tuberous sclerosis

  • Kim, Won-Seop
    • Clinical and Experimental Pediatrics
    • /
    • v.54 no.6
    • /
    • pp.241-245
    • /
    • 2011
  • Tuberous sclerosis complex (TSC) is a genetic multisystem disorder that results from mutations in the TSC1 or TSC2 genes, and is associated with hamartomas in several organs, including subependymal giant cell tumors. The neurological manifestations of TSC are particularly challenging and include infantile spasms, intractable epilepsy, cognitive disabilities, and autism. The TSC1- and TSC2-encoded proteins modulate cell function via the mammalian target of rapamycin (mTOR) signaling cascade, and are key factors in the regulation of cell growth and proliferation. The mTOR pathway provides an intersection for an intricate network of protein cascades that respond to cellular nutrition, energy levels, and growth factor stimulation. In the brain, TSC1 and TSC2 have been implicated in cell body size, dendritic arborization, axonal outgrowth and targeting, neuronal migration, cortical lamination, and spine formation. The mTOR pathway represents a logical candidate for drug targeting, because mTOR regulates multiple cellular functions that may contribute to epileptogenesis, including protein synthesis, cell growth and proliferation, and synaptic plasticity. Antagonism of the mTOR pathway with rapamycin and related compounds may provide new therapeutic options for TSC patients.

Angiotensin II Promotes Smooth Muscle Cell Proliferation and Migration through Release of Heparin-binding Epidermal Growth Factor and Activation of EGF-Receptor Pathway

  • Yang, Xiaoping;Zhu, Mei J.;Sreejayan, N.;Ren, J.;Du, Min
    • Molecules and Cells
    • /
    • v.20 no.2
    • /
    • pp.263-270
    • /
    • 2005
  • Transactivation of EGF-receptor (EGFR) by G-protein coupled receptors (GPCRs) is emerging as an important pathway in cell proliferation, which plays a crucial role in the development of atherosclerotic lesion. Angiotensin II (Ang II) has been identified to have a major role in the formation of atherosclerotic lesions, although the underlying mechanisms remain largely unclear. We hypothesize that Ang II promotes the proliferation and migration of smooth muscle cells through the release of heparin-binding epidermal growth factor like growth factor (HB-EGF), transactivation of EGFR and activation of Akt and Erk 1/2, with matrix metalloproteases (MMPs) playing a dispensable role. Primary rat aortic smooth muscle cells were used in this study. Smooth muscle cells rendered quiescent by serum deprivation for 12 h were treated with Ang II (100 nM) in the presence of either GM6001 ($20{\mu}M$), a specific inhibitor of MMPs or AG1478 ($10{\mu}M$), an inhibitor of EGFR. The levels of phosphorylation of EGFR, Akt and Erk 1/2 were assessed in the cell lysates. Inhibition of MMPs by GM6001 significantly attenuated Ang II-stimulated phosphorylation of EGFR, suggesting that MMPs may be involved in the transactivation of EGFR by Ang II receptor. Furthermore Ang II-stimulated proliferation and migration of smooth muscle cells were significantly blunted by inhibiting MMPs and EGFR and applying HB-EGF neutralization antibody, indicating that MMPs, HB-EGF and EGFR activation is necessary for Ang-II stimulated migration and proliferation of smooth muscle cells. Our results suggest that inhibition of MMPs may represent one of the strategies to counter the mitogenic and motogenic effects of Ang II on smooth muscle cells and thereby prevent the formation and development of atherosclerotic lesions.

Adipose-Derived Stem Cell Coculturing Stimulates Integrin-Mediated Extracellular Matrix Adhesion of Melanocytes by Upregulating Growth Factors

  • Kim, Hyangmi;Yi, Nayoung;Do, Byung-Rok;Lee, Ai-Young
    • Biomolecules & Therapeutics
    • /
    • v.27 no.2
    • /
    • pp.185-192
    • /
    • 2019
  • Coculture with adipose-derived stem cells (ADSCs) can stimulate proliferation and migration of melanocytes. To enhance outcomes of skin disorders caused by melanocyte loss or death, mixed transplantation with ADSCs has been suggested. However, role of cocultured ADSCs in proliferation and migration of melanocytes remains unclear. This study determined the effect of ADSCs on production of growth factors and expression levels of intergrins in primary culture of adult human melanocytes with or without ADSCs and in nude mice grafted with such melanocytes. Higher amounts of growth factors for melanocytes, such as bFGF and SCF were produced and released from ADSCs by coculturing with melanocytes. Relative levels of integrins ${\beta}1$, ${\alpha}5$, and ${\alpha}6$ as well as adhesion to fibronectin and laminin were increased in melanocytes cocultured with ADSCs. Such increases were inhibited by neutralization of bFGF or SCF. Relative levels of bFGF, SCF and integrins were increased in nude mice skin after grafting with melanocyte+ADSC cocultures. Collectively, these results indicate that ADSCs can stimulate proliferation and migration of melanocytes by increasing expression of integrins in melanocytes through upregulation of production/release of melanocyte growth factors such as bFGF and SCF.

The effect of Rhizoma coptidis and Centella asiatica extracts on human gingival fibroblasts (황련과 Centella asiatica 추출물이 치은 섬유모세포에 미치는 영향)

  • You, Hyung-Keun
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.3
    • /
    • pp.681-688
    • /
    • 1996
  • Periodontal regeneration requires the migration and proliferation of gingival fibroblasts and periodontal ligament cells. These cellular events are influenced and regulated by growth factors and some drugs. The purpose of this study is to examine the effect of Rhizoma coptidis and Centella asiatica extracts on human gingival fibroblasts. Gingival fibroblasts were primarily cultured from extracted premolar with non-periodontal diseases. Cells were cultured with ${\alpha}-MEM$ at $37^{\circ}C$, 5% $CO_2$, 100% humidity incubator for 2 or 3 days, as a measure of cell proliferation potential, it was examined that the DNA synthesis using $[^3H]-thyrnidine$ incorporation, the cell numbers (with or without dye), and cell viabilities. Rhizoma coptidis is increased the proliferation of gingival fibroblasts at concentration of $10^{-9}g/ml$, but Centella asiatica is decreased the proliferation at all concentrations. This study demonstrated that Rhizoma coptidis is a potential mitogen for human gingival fibroblasts in vitro, and we can expect the usefulness of this drug in periodontal regeneration.

  • PDF

Effect of Retinoids on Human Breast Cancer Cells (인체 유방암 세포에서 retinoids의 영향에 대한 연구)

  • 윤현정;신윤용;공구
    • Environmental Mutagens and Carcinogens
    • /
    • v.24 no.2
    • /
    • pp.51-66
    • /
    • 2004
  • Retinoids, better known as vitamin A, have been reported to inhibit the growth of several breast cancer cell lines in culture and to reduce breast tumor growth in animal models. Furthermore, retinoids can augment the action of other breast cancer cell growth inhibitors both in vitro and in vivo. Clinically, interest has increased in the potential use of retinoids for the prevention and treatment of human breast cancer. We have examine the effect of all-trans retinoic acid(tRA) and 9-cis retinoic acid(9-cis RA) on human breast cancer cell(MCF-10A, T47-D, MCF-7) proliferation using MTT assay and cell cycle analysis(FACS). Overexpression of cyclin D1 protein is observed in the majority of breast cancers, suggesting that dysregulated expression of cyclin D1 might be a critical event in breast cancer carcinogenesis. We investigated whether tRA and 9-cis RA might affect expression of cyclin D1 on human breast cancer cells(MCF-10A, T47-D, MCF-7) using RT-PCR and west-ern bolt. In MCF-10A cells, either tRA or 9-cis RA treatment did not affect the cell proliferation. In T47-D cells and MCF-7 cells, either tRA or 9-cis RA treatment showed the inhibition of the cell proliferation over control cells and also inhibit the estrogen stimulated cell proliferation when it was given together with estrogen. The effect of retinoids was dose- and time- dependent. T47-D cells treated with 1.0 $\muM$ tRA undergo G0/G1-phase arrest by Day 5. MCF-7 cells treated with 1.0 $\muM$ tRA undergo S-phase arrest by Day 5. All-trans retinoic acid(tRA) and 9-cis retinoic acid(9-cis RA) inhibited the cyelin D1 mRNA and protein expression levels of human MCF-7 and T47-D breast carcinoma cells in vitro. The data indicate that retinoids can reduce cyclin D1 expression levels in a variety of breast cell lines in vitro and result in inhibition of cell proliferation. tRA-mediated growth inhibition and cyclin D1 expression inhibition is more potent than 9-cis RA mediated that. tRA-mediated inhibition effect is more potent on T47-D cells than on MCF-7 cells. Our data suggest that retinoids activity is different according to property of cell lines. Future chemoprevention of breast cancer studies using retinoids will be necessary to determine the mechanism of the retinoids-mediated growth inhibition.

  • PDF