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Mammalian target of rapamycin inhibitors for treat-
ment in tuberous sclerosis

Tuberous sclerosis complex (TSC) is a genetic multisystem disorder that 
results from mutations in the TSC1 or TSC2 genes, and is associated 
with hamartomas in several organs, including subependymal giant 
cell tumors. The neurological manifestations of TSC are particularly 
challenging and include infantile spasms, intractable epilepsy, cognitive 
disabilities, and autism. The TSC1- and TSC2-encoded proteins 
modulate cell function via the mammalian target of rapamycin (mTOR) 
signaling cascade, and are key factors in the regulation of cell growth 
and proliferation. The mTOR pathway provides an intersection for an 
intricate network of protein cascades that respond to cellular nutrition, 
energy levels, and growth factor stimulation. In the brain, TSC1 and 
TSC2 have been implicated in cell body size, dendritic arborization, 
axonal outgrowth and targeting, neuronal migration, cortical lamina-
tion, and spine formation. The mTOR pathway represents a logical 
can didate for drug targeting, because mTOR regulates multiple 
cellular functions that may contribute to epileptogenesis, including 
protein synthesis, cell growth and proliferation, and synaptic plasticity. 
Antagonism of the mTOR pathway with rapamycin and related 
compounds may provide new therapeutic options for TSC patients.
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benign tumors in multiple organs, including the brain, the heart, 
the kidneys, the lungs, and the skin1). Its incidence is estimated to be 
1 in 6,000 live births2). The severity of the disease is highly variable, 
ranging from mild skin manifestations to intractable epilepsy, mental 
retardation, and autism3).

Rapamycin (also called sirolimus) is an immunosuppressive drug 
that has recently been shown to extend lifespan in multiple species, 
including mammals4). This antiaging property is presumably related 
to the mTORinhibiting properties of rapamycin. The mTOR 
pathway is crucial for the coordination of growth in response to 

Introduction

TSC is an autosomal dominant disorder caused by the inactivation 
of either of 2 tumor suppressor genes, hamartin (TSC1) or tuberin 
(TSC2). In the normal state, the hamartin–tuberin complex activates 
the protein Ras homolog enriched in brain (Rheb), which inhibits 
mammalian target of rapamycin (mTOR). If a TSC mutation is 
present, mTOR is constitutively activated, leading to abnormal 
cellular proliferation, ribosome biogenesis, and mRNA translation. 
As a consequence, TSC is characterized clinically by the growth of 
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energy status, stress, and nutrient availability5). The potential anti
aging properties of rapamycin and other mTOR inhibitors, such 
as RAD001 (everolimus), and CCI779 (temsirolimus) are of great 
interest. Unfortunately, the side effects associated with these drugs 
preclude research trials to study their impacts on aging in healthy 
individuals. In view of this obstacle, experts in the field of aging have 
suggested that these potential antiaging drugs should be introduced 
in clinical trials for the treatment of particular diseases, and then, if 
appropriate, be approved for prevention of all agerelated diseases in 
healthy individuals6). 

mTOR 

mTOR is a 290kDa serine/threonine protein kinase that is highly 
conserved among mammals and also has closely related analogs 
in lower eukaryotes, such as Drosophila and yeast7). mTOR has 
been implicated in numerous cellular functions, many of which 
are related to the fundamental processes of cell growth, survival, 
and homeostasis8). A variety of upstream signaling pathways can 
regulate mTOR activity in response to different extracellular sti muli 
or intracellular signals, including nutrient and energy status, growth 
factors, and stress9). In turn, mTOR responds to these upstream 
signals by modulating multiple downstream pathways, which 
mediate cellular growth, proliferation, metabolism, and survival, 
usually due to direct changes in the translation of relevant proteins10). 
Thus, during anabolic states in the presence of nutrients, growth 
factors, or insulin, signaling through specific upstream pathways, 
such as the phosphatidylinositol3 kinase (PI3K)/Akt (protein kinase 
B) pathway, activates mTOR, leading to increased protein synthesis, 
cellular growth, and proliferation11). In catabolic states with nutrient/
energy or oxygen deprivation, other upstream regulators, such 
as AMPkinase, inhibit mTOR activity, thus decreasing protein 
translation and cellular growth, proliferation, and metabolism9). 
Activation or inhibition of mTOR by upstream pathways is generally 
accomplished through opposing effects on the tuberous sclerosis gene 
products, hamartin and tuberin, and on the small GTPase protein, 
Rheb.

The cell signaling pathway involving mTOR is further complicated 
by poorly defined intermediate steps, multiple feedback loops, and 
the formation of mTOR complex 1 (mTORC1) and mTOR complex 
2 (mTORC2). mTORC1 and mTORC2 are functional complexes 
of mTOR bound to the regulatory proteins raptor and rictor 
respectively, which differ in their sensitivity to the mTOR inhibitor, 
rapamycin12).

In addition to its functions in cellular growth and proliferation, 
mTOR has other important and complex roles in regulating cell 

survival and cell death, especially in relation to the processes of 
autophagy, apoptosis, and immune regulation. Autophagy involves 
the degradation and recycling of proteins and other macromolecules, 
and normally promotes cell survival under conditions of bioenergetic 
stress or in catabolic states where resources are limited. However, in 
some situations, autophagy may also mediate an alternative (non
apoptotic, autophagic) form of programmed cell death (Type II 
PCD), thus revealing a dual role of autophagy in promoting both cell 
survival and death, depending on the cellular context13). In anabolic 
states, in addition to stimulating protein synthesis, mTOR generally 
inhibits autophagy and thus reduces the degradation of proteins. 
Conversely, mTOR inhibitors, such as rapamycin, usually stimulate 
autophagy, with a resultant neuroprotective effect in various models 
of brain injury14). Finally, mTOR plays a critical role in immune 
responses via regulation of antigenpresenting cells and Tcells, and 
rapamycin is used clinically as a potent immunosuppressant drug. 
While the effects of rapamycin on autophagy, apoptosis, and immune 
regulation may most directly translate into neuromodulatory 
and neuroprotective properties, these features may also have anti
epileptogenic effects.

The clinical and therapeutic importance of mTOR is wide
reaching and continues to expand. Abnormal mTOR activity, leading 
to excessive cellular growth and proliferation, has been implicated in 
the pathophysiology of numerous human cancers, including both 
sporadic, isolated organspecific and multiorgan tumors, genetic 
tumor syndromes. In many of these cases, specific mutations of some 
component of the mTOR signaling pathway has been documented, 
resulting in hyperactivation of mTOR or its downstream effectors. 

On the basis of the physiological and pathophysiological properties 
of mTOR, it is reasonable to hypothesize that mTOR signaling could 
be involved in mechanisms of epileptogenesis15).

mTOR inhibitors and TSC

The current main clinical complication related to TSC for which 
treatment with mTOR inhibitors is indicated is subependymal giant 
cell astrocytoma (SEGA). This complication affects approximately 
15% of patients with TSC and it occurs in the pediatric age group16). 
SEGAs tend to lose their propensity to grow in the early twenties. 

The traditional management approach is to monitor SEGAs with 
periodic neuroimaging, and to resect those that exhibit growth and/
or are associated with clinical signs of intracranial hypertension. This 
approach is being challenged by recent observations that suggest 
that mTOR inhibitors such as rapamycin (sirolimus) and RAD001  
can induce partial regression of SEGAs17,18). The first report showing 
clear regression of SEGAs in 5 patients with the use of rapamycin 
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was published in 200617). Recently, a phase II trial18) using everolimus 
to treat SEGAs in 28 patients with TSC showed SEGA reduction 
of at least 30% in 21 patients (75%) and at least 50% in 9 patients 
(32%). Everolimus was well tolerated, as only single cases of grade 
3 treatmentrelated sinusitis, pneumonia, viral bronchitis, tooth 
infection, stomatitis, and leukopenia were reported.

These observations suggest that treatment with mTOR inhibitors 
could serve as an acceptable alternative to SEGA surgery. Renal 
angiomyolipomas and lymphangioleimyomatosis are other TSC 
manifestations against which mTOR inhibitors have proven potential 
efficacy19). In addition, animal models of TSC have suggested that 
mTOR inhibitors could have beneficial effects on cognitive deficits20) 

and on epileptogenesis15). Whether similar benefits would be observed 
in humans with TSC is still unknown. Research trials are ongoing 
and should soon provide answers to these questions.

The duration of treatment is likely to be prolonged or even lifelong. 
There is clear evidence that SEGAs grow back after administration of 
the mTOR inhibitor is stopped17). Most experts currently recommend 
continuation of mTOR inhibitors at the lowest efficacious dose. This 
cohort of patients, who will experience prolonged exposure to mTOR 
inhibitors, should be carefully followed longitudinally to better 
document longterm side effects, but also to compare their longevity 
with that of similar patients receiving TSCs. These patients represent 
a unique opportunity to study the potential antiaging properties of 
mTOR inhibitors in humans.

In animal models, mTOR inhibitors showed that mTORC1 
blockade alone and PI3KmTOR blockade lead to suppression of 
tumor development and longer survival of the treated animals21). 
Rapamycin, the first mTOR inhibitor used in individuals with 
TSCassociated lesions, was able to stimulate regression of 
subependymal giant cell tumors (SGCTs)17). Subsequent studies have 
confirmed its efficacy in SGCTs, but also in other lesions such as 
angiomyolipomas22). The effects of mTOR inhibitors on the mTOR 
pathway result in decreased protein synthesis and cellcycle arrest, 
as well as decreased angiogenesis. More recently, a new mTOR 
inhibitor, RAD001, has been used in the treatment of 28 patients 
with TSCassociated brain lesions but with no symptoms of increased 
intracranial pressure18). In particular, this study reports a reduction in 
tumor size of at least 30% in 75% of patients and at least 50% in 32% 
of treated individuals. Varying degrees of reduction of SGCT size have 
been observed in all the 38 patients treated with mTOR inhibitors 
(sirolimus or everolimus) to date. Most SGCT reductions occur in 
the first 3 months of mTOR inhibitor treatment, after which the rate 
of reduction slows. In recent case reports, a similar antitumor efficacy 
was achieved, even with lower serum levels of everolimus23). None 
of the patients treated with mTOR inhibitors required surgery or 

developed new SGCTs while receiving treatment17,18). Cerebrospinal 
fluid obstruction was relieved by the reduction in SGCT size18). The 
treatment was also associated with a clinically relevant reduction in 
the overall frequency of seizures and an improvement in quality of 
life. 

Unfortunately, regrowth of SGCTs occurred a few months 
after drug discontinuation in all but one of the reported patients24). 
Therefore, mTOR inhibition may need to be continuous for 
the benefits to persist, and the benefits and hazards of longterm 
treatment with lowdosage mTOR inhibitors should be evaluated. 

Conclusions and future perspectives

An early diagnosis of SGCT in neurologically asymptomatic 
children with TSC may allow prompt surgical removal of the tumor 
before the appearance of signs of increased intracranial pressure, and 
this approach is being progressively adopted to lessen the morbidity/
mortality rate. Surgical treatment is obviously mandatory in case of 
lifethreatening symptoms. However, the dramatic response of TSC
associated SGCTs to mTOR inhibitors suggests that these drugs 
could be a potential alternative to surgery in many cases. 

mTOR inhibitors could be recommended when an asymptomatic 
SGCT shows growth in 2 consecutive magnetic resonance imaging  
evaluations following diagnosis. mTOR inhibitors could also be used 
as an initial treatment to facilitate subsequent surgery in individuals 
with bilateral lesions. Medical therapy may also have a role when 
SGCTs present in an atypical location or exhibit aggressive growth. 
Furthermore, in case of regrowth after a first resection, considering 
the higher risk of further surgery, pharmacotherapy could provide 
an alternative method to keep lesion size under control. Little is 
known about the longterm efficacy and safety of low dosage use 
of mTOR inhibitors and whether regrowth could be prevented by 
a more prolonged treatment course. In animal models, rapamycin 
dosing comparison studies indicated that the duration of rapamycin 
treatment is more important than dose intensity in terms of efficacy; 
prolonged treatment with low doses of mTOR inhibitors resulted 
in more complete and durable tumor responses25,26). Our current 
understanding of the effects of continuous mTOR inactivation in 
individuals with TSC is still poor. mTOR inhibitors may also activate 
pathways that should not be activated, and this issue will need to be 
taken into account when a longterm treatment is proposed. 

The feasibility and timeline for discontinuation of mTOR inhibitor
based pharmacotherapy also remains unclear, and further studies 
are required to explore the optimal duration of treatment. Since it is 
known that the growth of SGCTs tends to slow in early adulthood, 
mTOR inhibitor treatment should theoretically be undertaken 



244     WS Kim • mTOR inhibitors for treatment in tuberous sclerosis

until the patient reaches around 20 years of age. Strategies for future 
clinical trials with mTOR inhibitors may include the investigation of 
longer treatment durations with minimum dosage. 

When choosing between surgical and/or medical intervention, 
clinicians should take the risks and benefits of each option into 
account. There are several issues to be considered, and every decision 
should be discussed thoroughly with the parents and tailored to the 
individual case. Depending on the age of the patient, one option may 
be more valid than the other. For example, pharmacotherapy might 
be preferred when a growing SGCT is discovered in adolescents, 
as the therapy may only be required for a few years. On the other 
hand, in childhood, a single surgical removal could be preferred to 
many years of pharmacotherapy. The positive effect that mTOR 
inhibitors have on several manifestations of TSC is an important 
factor in favor of pharmacotherapy, and should be considered in 
patients presenting with problems such as renal angiomyolipomas, 
pulmonary lymphangioleiomyomatosis, and/or intractable epilepsy, 
in addition to SGCTs. Since the activation of the mTOR pathway 
has been implicated in epileptogenesis, mTOR inhibition could have 
antiepileptic effects in patients with TSC18,27). 

Inhibition of the mTOR pathway may provide a biologically 
targeted therapy that has the potential to change current clinical 
practice regarding management of SGCTs. Currently, it is still 
unclear whether pharmacotherapy is able to prevent or merely delay 
the need for surgical resection of SGCTs. In the coming years, 
medical treatment will certainly play a larger role in the management 
of children with TSC, as our understanding of the pathogenesis of 
this disorder at the molecular level improves.

In conclusion, a new treatment era has begun in the field of TSC 
since the discovery of the potential beneficial effects of mTOR 
inhibitors. Although the use of mTOR inhibitors is becoming 
increasingly accepted, especially for the treatment of SEGAs in TSC, 
questions remain concerning the duration of treatment and long
term side effects. Whether mTOR inhibitors will have a significant 
impact on longevity in TSC is unknown, but warrants attention, as 
mTOR inhibitors are increasingly recognized as antiaging drugs in 
animal models. Longterm prospective studies in patients with TSC 
will provide information on the potential antiaging properties of 
mTOR inhibitors in humans.
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