Browse > Article

Nuclear Imaging of Cellular Proliferation  

Yeo, Jeong-Seok (Department of Nuclear Medicine, Asan Medical Center University of Ulsan College of Medicine)
Publication Information
The Korean Journal of Nuclear Medicine / v.38, no.2, 2004 , pp. 198-204 More about this Journal
Abstract
Tumor cell proliferation is considered to be a useful prognostic indicator of tumor aggressiveness and tumor response to therapy but in vitro measurement of individual proliferation is complex and tedious work. PET imaging provides a noninvasive approach to measure tumor growth rate in situ. Early approaches have used $^{18}F$-FDG or methionine to monitor proliferation status. These 2 tracers detect changes in glucose and amino acid metabolism, respectively, and therefore provide only an indirect measure of proliferation status. More recent studies have focused on DNA synthesis itself as a marker of cell proliferation. Cell lines and tissues with a high proliferation rate require high rates of DNA synthesis. $[^{11}C]Thymidine$ was the first radiotracer for noninvasive imaging of tumor proliferation. The short half-life of $^{11}C$ and rapid metabolism of $[^{11}C]Thymidine$ in vivo make the radiotracer less suitable for routing use. Halogenated thymidine analogs such as 5-iodo-2-deoxyuridine (IUdR) can be successfully used as cell proliferation markers for in vitro studies because these compounds are rapidly incorporated into newly synthesized DNA. IUdR has been evaluated as a potential in vivo tracer in nuclear medicing but the image qualify and the calculation of proliferation rates are impaired by its rapid in vivo degradation. Hence, the thymidine analog $3 (FLT) was recently introduced as a stable proliferation marker with a suitable nuclide half-life and stable in vivo. $[^{18}F]FLT$ is phosphorylated to 3-fluorothymidine monophosphate by thymidine kinase 1 and reflects thymidine kinase 1 activity in proliferating cell. $[^{18}F]FLT$ PET is feasible in clincal use and well correlates with cellular proliferation. Choline is a precursor for the biosynthesis of phospholipids (in particular, phosphatidylcholine), which is the essential component of all eukaryotic cell membranes and $[^{11}C]choline$, which is a new marker for cellular proliferation.
Keywords
Cell proliferation; PET; Nucleoside; FLT; Choline;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Derlon JM, Petit-Taboue MC, Chapon F, Beaudouin V, Noel MH, Creveuil C et al. The in vivo metabolic pattern of low-grade brain gliomas: a positron emission tomographic study using 18F-fluorodeoxyglucose and 11C-L-methylmethionine. Neurosurgery 1997;40:276-87.   DOI   ScienceOn
2 Bading JR, Shahinian AH, Bathija P, Conti PS. Pharmacokinetics of the thymidine analog 2-fluoro-5-'14C'-methyl-1--D-arabinofuranosyluracil ('14C'FMAU) in rat prostate tumor cells. Nucl Med Biol 2000;27:361-8.   DOI   ScienceOn
3 Shields AF, Grierson JR, Kozawa SM, Zheng M. Development of labeled thymidine analogs for imaging tumor proliferation. Nucl Med Biol 1996;23:17-22.   DOI   ScienceOn
4 Wells P, Gunn RN, Alison M, Steel C, Golding M, Ranicar AS et al. Assessment of proliferation in vivo using 2-'11C'thymidine positron emission tomography in advanced intra-abdominal malignancies. Cancer Res 2002;62:5698-702.   PUBMED
5 Eary JF, Mankoff DA, Spence AM, Berger MS, Olshen A, Link JM et al. 2-'C-11'thymidine imaging of malignant brain tumors. Cancer Res 1999;59:615-21.   PUBMED
6 Blasberg RG, Roelcke U, Weinreich R, Beattie B, von Ammon K, Yonekawa Y et al. Imaging brain tumor proliferative activity with '124I'iododeoxyuridine. Cancer Res 2000;60:624-35.   PUBMED
7 Higashi K, Clavo AC, Wahl RL. Does FDG uptake measure proliferative activity of human cancer cells? In vitro comparis on with DNA flow cytometry and tritiated thymidine uptake. J Nucl Med 1993;34:414-9.   PUBMED
8 Rasey JS, Grierson JR, Wiens LW, Kolb PD, Schwartz JL. Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med 2002;43:1210-7.   PUBMED
9 Vesselle H, Grierson J, Muzi M, Pugsley JM, Schmidt RA, Rabinowitz P et al. In vivo validation of 3'deoxy-3'-'(18)F' fluorothymidine('(18)F'FLT) as a proliferation imaging tracer in humans: correlation of '(18)F'FLT uptake by positron emission tomography with Ki-67 immunohistochemistry and flow cytometry in human lung tumors. Clin Cancer Res 2002;8:3315-23.   PUBMED
10 Vesselle H, Schmidt RA, Pugsley JM, Li M, Kohlmyer SG, Vallires E et al. Lung cancer proliferation correlates with 'F-18'fluorodeoxyglucose uptake by positron emission tomography. Clin Cancer Res 2000;6:3837-44.   PUBMED
11 Buck AC, Schirrmeister HH, Guhlmann CA, Diederichs CG, Shen C, Buchmann I et al. Ki-67 immunostaining in pancreatic cancer and chronic active pancreatitis: does in vivo FDG uptake correlate with proliferative activity? J Nucl Med 2001;42:721-5.   PUBMED
12 Francis DL, Freeman A, Visvikis D, Costa DC, Luthra SK, Novelli M et al. In vivo imaging of cellular proliferation in colorectal cancer using positron emission tomography. Gut 2003;52:1602-6.   DOI   ScienceOn
13 Conti PS, Bading JR, Alauddin MM, Fissekis JD, Berenji B, Hayles S, Jadvar H. Tumor imaging with 2-fluoro-5-11C-methyl-1--Darabinofuranosyluracil(11C-FMAU): Initial clinical studies. J Nucl Med 2002;43(suppl 5):26.
14 Martiat P, Ferrant A, Labar D, Cogneau M, Bol A, Michel C et al. In vivo measurement of carbon-11 thymidine uptake in non-Hodgkin's lymphoma using positron emission tomography. J Nucl Med 1988;29:1633-7.   PUBMED
15 Philip PA, Bagshawe KD, Searle F, Green AJ, Begent RH, Newlands ES et al. In vivo uptake of 131I-5-iodo-2-deoxyuridine by malignant tumours in man. Br J Cancer 1991;63:134-5.   DOI   PUBMED   ScienceOn
16 D C Brown, K C Gatter. Ki67 protein: the immaculate deception? Histopathology 2002;40:2-11.   DOI   ScienceOn
17 Avril N, Menzel M, Dose J, Schelling M, Weber W, Janicke F et al. Glucose metabolism of breast cancer assessed by 18F-FDG PET: histologic and immunohistochemical tissue analysis. J Nucl Med 2001;42:9-16.   PUBMED
18 Mangner TJ, Klecker RW, Anderson L, Shields AF. Synthesis of 2'-deoxy-2'-'18F'fluoro-beta-D-arabinofuranosyl nucleosides, '18F'FAU, '18F'FMAU, '18F'FBAU and '18F'FIAU, as potential PET agents for imaging cellular proliferation. Synthesis of '18F'labelled FAU, FMAU, FBAU, FIAU. Nucl Med Biol 2003;30:215-24.
19 Maehara T, Nariai T, Arai N, Kawai K, Shimizu H, Ishii K et al. Usefulness of '11C'methionine PET in the diagnosis of dysembryoplastic neuroepithelial tumor with temporal lobe epilepsy. Epilepsia 2004;45:41-5.   PUBMED
20 Howard A, Pelc SR. Synthesis of deoxyribonucleic acid in normal and irradiated cells and its relation to chromosome breakage. Heredity 1983;6(Suppl 1):261-73.
21 Ishiwata K, Ido T, Abe Y, Matsuzawa T, Murakami M. Studies on 18F-labeled pyrimidines III. Biochemical investigation of 18F-labeled pyrimidines and comparison with 3H-deoxythymidine in tumor-bearing rats and mice. Eur J Nucl Med 1985;10:39-44.
22 Conti PS, Alauddin MM, Fissekis JR, Schmall B, Watanabe KA. Synthesis of 2-fluoro-5-'11C'-methyl-1--D-arabinofuranosyluracil ('11C'- FMAU): a potential nucleoside analog for in vivo study of cellular proliferation with PET. Nucl Med Biol 1995;22:783-9.
23 Tjuvajev JG, Macapinlac HA, Daghighian F, Scott AM, Ginos JZ, Finn RD et al. Imaging of brain tumor proliferative activity with iodine-131-iododeoxyuridine. J Nucl Med 1994;35:1407-17.   PUBMED
24 Shinoura N, Nishijima M, Hara T, Haisa T, Yamamoto H, Fujii K, et al. Brain tumors: detection with C-11 choline PET. Radiology 1997;202:497-503.   DOI   PUBMED
25 Lu L, Bergstrom M, Fasth KJ, Lngstrom B. Synthesis of '76Br'bromofluorodeoxyuridine and its validation with regard to uptake, DNA incorporation, and excretion modulation in rats. J Nucl Med 2000;41:1746-52.   PUBMED
26 Toyohara J, Waki A, Takamatsu S, Yonekura Y, Magata Y, Fujibayashi Y. Basis of FLT as a cell proliferation marker: comparative uptake studies with '3H'thymidine and '3H'arabinothymidine, and cell-analysis in 22 achronously growing tumor cell lines Nucl Med Biol 2002;29:281-7.
27 Schwartz JL, Tamura Y, Jordan R, Grierson JR, Krohn KA. Monitoring tumor cell proliferation by targeting DNA synthetic processes with thymidine and thymidine analogs. J Nucl Med 2003;44:2027-32.   PUBMED
28 Utriainen M, Metsahonkala L, Salmi TT. Metabolic characterization of childhood brain tumors. comparison of 18F-fluorodeoxyglucose and 11C-methionine positron emission tomography. Cancer 2002;95:1376-86.
29 Jager PL, Que TH, Vaalburg W, Pruim J, Elsinga P, Plukker JT. Carbon-11 choline or FDG-PET for staging of oesophageal cancer? Eur J Nucl Med Mol Imaging 2001;28:1845-9.
30 Shields AF, Mankoff D, Graham MM, Zheng M, Kozawa SM, Link JM, et al. Analysis of 2-carbon-11-thymidine blood metabolites in PET imaging. J Nucl Med 1996;37:290-6.   PUBMED
31 Dittmann H, Dohmen BM, Kehlbach R, Bartusek G, Pritzkow M, Sarbia M et al. Early changes in '18F'FLT uptake after chemotherapy: an experimental study. Eur J Nucl Med Mol Imaging 2002;29:1462-9   DOI   PUBMED
32 Kobori O, Kirihara Y, Kosaka N, Hara T. Positron emission tomography of esophageal carcinoma using (11)C-choline and (18)F-fluorodeoxyglucose: a novel method of preoperative lymph node staging. Cancer 1999;86:1638-48.   DOI   ScienceOn
33 Higashi K, Clavo AC, Wahl RL. Does FDG uptake measure proliferative activity of human cancer cells? In vitro comparison with DNA flow cytometry and tritiated thymidine uptake. J Nucl Med 1993;34:414-9.   PUBMED
34 Watanabe KA, Reichman U, Hirota K, Lopez C, Fox JJ. Nucleosides. 110. Synthesis and antiherpes virus activity of some 2-fluoro- 2-deoxyarabinofuranosylpyrimidine nucleosides. J Med Chem 1979;22:21-4.
35 De Jong IJ, Pruim J, Elsinga PH, Jongen MM, Mensink HJ, Vaalburg W. Visualisation of bladder cancer using (11)C-choline PET: first clinical experience. Eur J Nucl Med Mol Imaging 2002;29:1283-9.   DOI   PUBMED   ScienceOn
36 Ishiwata K, Ido T, Abe Y, Matsuzawa T, Murakami M. Studies on 18F-labeled pyrimidines III. Biochemical investigation of 18F-labeled pyrimidines and comparison with 3H-deoxythymidine in tumor bearing rats and mice. Eur J Nucl Med 1985;10:39-44.
37 Buck AK, Schirrmeister H, Hetzel M, Von Der Heide M, Halter G, Glatting G et al. 3-deoxy-3-'(18)F'fluorothymidine-positron emission tomography for noninvasive assessment of proliferation in pulmonary nodules. Cancer Res 2002;62:3331-4.   PUBMED
38 Johansson NG, Eriksson S. Structure-activity relation ships for phosphorylation of nucleoside analogs to monophosphates by nucleoside kinases. Acta Biochemica Polonica 1996;43:143-60.
39 Kotzerke J, Prang J, Neumaier B, Volkmer B, Guhlmann A, Kleinschmidt K, et al. Experience with carbon-11 choline positron emission tomography in prostate carcinoma. Eur J Nucl Med Mol Imaging 2000;27:1415-9.   DOI   ScienceOn
40 Vander Borght T, Labar D, Pauwels S, Lambotte L. Production of '2- 11C'thymidine for quantification of cellular proliferation with PET. Int J Rad Appl Instrum 1991;42:103-4.   DOI   ScienceOn
41 Ohtani T, Kurihara H, Ishiuchi S, Saito N, Oriuchi N, Inoue T, et al. Brain tumour imaging with carbon-11 choline: comparison with FDG PET and gadolinium-enhanced MR imaging. Eur J Nucl Med Mol Imaging 2001;28:1664-70.   DOI   ScienceOn
42 Ishiwata K, Ido T, Kawashima K, Murakami M, Takahashi T. Studies on 18F-labeled pyrimidines. II. Metabolic investigation of 18F-5- fluorouracil, 18F-5-fluoro-2-deoxyuridine and 18F-5-fluorouridine inrats. Eur J Nucl Med 1984;9:185-9.
43 Christman D, Crawford EJ, Friedkin M, Wolf AP. Detection of DNA synthesis in intact organisms with positron-emitting 'methyl-11C'thymidine. Proc Natl Acad Sci USA 1972;69:988-92.   DOI   ScienceOn