• Title/Summary/Keyword: Cell impedance analysis

Search Result 158, Processing Time 0.027 seconds

The Deduction of the Optimal Length to Width Ratio of Dye-sensitized Solar Cell and the Fabrication of a Module (가로-세로 비율에 따른 염료감응형 태양전지의 최적 조건 도출 및 모듈 제조)

  • Kim, Hee-Je;Park, Sung-Joon;Choi, Jin-Young;Seo, Hyun-Woong;Kim, Mi-Jeong;Lee, Kyoung-Jun;Son, Min-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.100-106
    • /
    • 2009
  • A novel 8 V DC power source with an external series-parallel connection of 50 Dye-sensitized Solar Cells (DSCs) has been proposed. One DSC has the optimized length to width ratio of $5.2{\times}2.6\;cm$ and an active area $8\;cm^2$ ($4.62{\times}1.73\;cm$) which attained a conversion efficiency of 4.02%. From the electrochemical impedance spectroscopic analysis, it was found that the resistance elements related to the Pt electrode and electrolyte interface behave like that of diode and the series resistance corresponds to the sum of the other resistance elements. Surface morphology and sheet resistance of Pt counter electrode did not degrade the performance of the cell. This novel 8V-0.33A DC power source shows stable performance with an energy conversion efficiency of 4.24% under 1 sun illumination (AM 1.5, Pin of $100\;mW/cm^2$).

Analysis of Long-term Stability of Direct Methanol Fuel Cell and Investigation of the Methods to Improve its Performance (직접메탄올 연료전지의 장기운전 특성 분석 및 성능향상 연구)

  • Lee, Hyun-Sook;Bae, Byung-Chan;Lee, Jae-Young;Im, Tae-Hun;Ha, Heung-Yong;Hong, Seong-Ahn
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.1
    • /
    • pp.31-39
    • /
    • 2005
  • Direct methanol fuel cell (DMFC) is considered as a candidate for portable power sources, that could overcome the disadvantages of lithium battery. But in order to attain commercial viability the long term stability of the DMFC should be achieved. Understanding the long-term behavior of membrane-electrode assembly (MEA) is a prerequisite to this purpose and the optimization of the MEA is also needed. In this study we have investigated the changes in performance and electrochemical properties of the MEA during extended operation and the effects of heat treatment of MEA on the long-term performance. The MEAs have been treated in an autoclave with saturated water vapor at 120$^{\circ}C$, vacuum oven at 140$^{\circ}C$ and boiling in organic solvents. The autoclaved MEA was found to be have the best long term performance. The on-off operation mode also increased the performance probably due to effective removal of products from the electrodes. Physical and electrochemical analyses using a scanning electron microscope, impedance analyser and half-cell technique have been done to characterize the MEAs.

A Study on the Effect of Water Freezing on the Characteristics of Polymer Electrolyte Membrane Fuel Cells (물의 결빙이 고분자전해질 연료전지 성능에 미치는 영향 및 그 원인에 관한 연구)

  • Ko, Jae-Joon;Cho, Eun-Ae;Ha, Heung-Yong;Hong, Seong-Ahn;Lee, Kwan-Young;Lim, Tae-Won;Oh, In-Hwan
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.36-40
    • /
    • 2003
  • Freezing of water in a polymer electrolyte membrane fuel cell (PEMFC) may cause severe problems in driving a fuel cell vehicle during the winter time. Characteristics of PEMFC which suffered low temperatures below zero degree was examined with the thermal cycles from 80 to $-10^{\circ}C$. With the thermal cycles, the cell performance was degraded due to the phase transformation and volume changes of water. Effects of freezing of water in PEMFC on the electrode structure and polarization resistance were examined by BET analysis, cyclic voltammetry, and AC impedance spectroscopy.

Electrochemical Properties of LiNi0.8Co0.16Al0.04O2 and Surface Modification with Co3(PO4)2 as Cathode Materials for Lithium Battery

  • Ryu, Kwang-Sun;Lee, Sang-Hyo;Park, Yong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.9
    • /
    • pp.1737-1741
    • /
    • 2008
  • The electrochemical and thermal stability of $LiNi_{0.8}Co_{0.16}Al_{0.04}O_2$ were studied before and after $Co_3(PO_4)_2$ coating. Different to conventional coating material such as $ZrO_2$ or AlPO4, the coating layer was not detected clearly by TEM analysis, indicating that the $Co_3(PO_4)_2$ nanoparticles effectively reacted with surface impurities such as $Li_2CO_3$. The coated sample showed similar capacity at a low C rate condition. However, the rate capability was significantly improved by the coating effect. It is associated with a decrease of impedance after coating because impedance can act as a major barrier for overall cell performances in high C rate cycling. In the DSC profile of the charged sample, exothermic peaks were shifted to high temperatures and heat generation was reduced after coating, indicating the thermal reaction between electrode and electrolyte was sucessfully suppressed by $Co_3(PO_4)_2$ nanoparticle coating.

PEMFC Characterization Study by in-situ Analysis Method (In-Situ 분석법에 의한 연료전지 특성 연구)

  • Kim, Young-Min;Lee, Jong-Hyun;Im, Se-Joon;Ahn, Byung-Ki;Lim, Tae-Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.3
    • /
    • pp.208-215
    • /
    • 2009
  • PEMFC stack power output is needed to be around 100 kW to meet the requirements of automotive application and scaling-up the active area of the stack cells will allow a higher power. In the case of scaling-up the active area of cells, it is difficult to obtain uniform in-plane internal conditions such as temperature, relative humidity and stoichiometry of the feed gas. These ununiformity with the location in the cell would affect both the performance and durability of the stack, so it is important to understand phenomena in the cell for improving them. In this study, the current density, electrochemical resistance and performance distribution measurement was performed to understand the ununiformity in a single cell using in-situ method; (1) Current Density Distribution (CDD) Device and (2) Segmented Cell Fixture. The influence of location of feed gas on the performance of a single cell was experimentally measured and discussed by using a segmented single cell which was composed of 8 compartments. The correlation between the location and performance in a single cell was discussed by these two tools and it was extended between the local characterization and the durability in a MEA by comparing the used cell with a fresh one. It was also studied in terms of electrochemistry by Electrochemical Impedance Spectroscopy.

Numerical Analysis of Electromagnetic Radiation Characteristics by High Voltage and General Cables for Fuel Cell Electric Vehicle (FCEV) (수소 연료전지 차량용 고전압 케이블과 일반 케이블에 의한 차량 전자파 방사 특성 수치해석 연구)

  • Lee, Soon-Yong;Seo, Won-Bum;Lim, Ji-Seon;Choi, Jae-Hoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.2
    • /
    • pp.152-160
    • /
    • 2011
  • The electromagnetic characteristics of FCEVs (fuel cell electric vehicles) are much different from the existing combustion engine cars as well as hybrid, plug-in-hybrid, and pure electric vehicles due to the high voltage/current generated by a fuel cell stack which uses a compressed hydrogen gas reacted with oxygen. To operate fuel cell stack efficiently, BOP (Balance of Plant) which is consisted of many motors in water pump, air blower, and hydrogen recycling pump as well as inverters for these motors is essential. Furthermore, there are also electric systems for entertainment, information, and vehicle control such as navigation, broadcasting, vehicle dynamic control systems, and so on. Since these systems are connected by high voltage or general cables, EMC (Electromagnetic compatibility) analysis for high voltage and general cable of FCEV is the most important element to prevent the possible electric functional safety errors. In this paper, electromagnetic fields by high voltage and general cables for FCEVs is studied. From numerical analysis results, total time harmonic electromagnetic field strength from high voltage and general cables have difference of 13~16 dB due to ground effect by impedance matching. The EMI results of FECV at 10 m distance shows difference of 41 dB at 30 MHz and 54 dB at 230 MHz compared with only general cable routing.

Electrochemical Characteristics of Anode-supported Solid Oxide Fuel Cells (연료극 지지형 고체산화물 연료전지의 전기화학적 특성)

  • Yoon Sung Pil;Han Jonghee;Nam Suk Woo;Lim Tae-Hoon;Hong Seong-Ahn;Hyun Sang-Hoon;Yoo Young-Sung
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.2
    • /
    • pp.58-64
    • /
    • 2001
  • YSZ ($8mol\%$ yttria-stabilized zirconia)-modified LSM $(La_{0.85}Sr_{0.15}MnO_3)$ composite cathodes were fabricated by formation of YSZ film on triple phase boundary (TPB) of LSM/YSZ/gas. The YSZ coating film greatly enlarged electrochemical reaction sites from the increase of additional TPB. The composite cathode was formed on thin YSZ electrolyte (about 30 Um thickness) supported on an anode and then I-V characterization and AC impedance analyses were performed at temperature between $700^{\circ}C\;and\;800^{\circ}C$. As results of the impedance analysis on the cell at $800^{\circ}C$ with humidified hydrogen as the fuel and air as the oxidant, R1 around the frequency of 1000 Hz represents the anode Polarization. R2 around the frequency of 100Hz indicates the cathode polarization, and R3 below the frequency of 10 Hz is the resistance of gas phase diffusion through the anode. The cell with the composite cathode produced power density of $0.55\;W/cm^2\;and\;1W/cm^2$ at air and oxygen atmosphere, respectively. The I-V curve could be divided into two parts showing distinctive behavior. At low current density region (part I) the performance decreased steeply and at high current density region (part II) the performance decreased gradually. At the part I the performance decrease was especially resulted from the large cathode polarization, while at the part H the performance decrease related to the electrolyte polarization.

A Facile Combustion Synthesis Route for Performance Enhancement of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF6428) as a Robust Cathode Material for IT-SOFC

  • Yoo, Young-Sung;Namgung, Yeon;Bhardwaj, Aman;Song, Sun-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.5
    • /
    • pp.497-505
    • /
    • 2019
  • Lanthanum-based transition metal cations containing perovskites have emerged as potential catalysts for the intermediate-temperature (600-800℃) oxygen reduction reaction (ORR). Here, we report a facile acetylacetone-assisted combustion route for the synthesis of nanostructured La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF6428) cathodes for intermediate-temperature solid-oxide fuel cells (IT-SOFCs). The as-prepared powder was analyzed by thermogravimetry analysis-differential scanning calorimetry. The powder calcined at 800℃ was characterized by X-ray diffraction, scanning electrode microscopy, energy dispersive X-ray spectroscopy, and Brunauer-Emmett-Teller surface area measurements. It was found that the porosity of the air electrode significantly increased by utilizing the nanostructured LSCF6428 instead of commercial powder. The performance of a single cell fabricated with the nanostructured LSCF6428 cathode increased by 112%, from 0.4 to 0.85 W cm-2, at 700℃. Electrochemical impedance spectroscopy showed a considerable reduction in the area-specific resistance and activation energy from 133.5 to 61.5 kJ/mol, resulting in enhanced electrocatalytic activity toward ORR and overall cell performance.

Characteristics of Photoresist-derived Carbon Nanofibers for Li-ion Full Cell Electrode

  • Kim, Hwan-Jun;Joo, Young-Hee;Lee, Sang-Min;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.5
    • /
    • pp.265-269
    • /
    • 2014
  • Carbon nanofiber electrode has been fabricated for energy storage systems by the electrospinning of SU-8 precursor and subsequent pyrolysis. Various parameters including the applied voltage, the distance between syringe tip and target collector and the flow rate of the polymer affect the diameter of SU-8 electrospun nanofibers. Shrinkage during pyrolysis decreases the fiber diameter. As the pyrolysis temperature increases, the resistivity decreases dramatically. Low resistivity is one of the important characteristics of the electrodes of an energy storage device. Given the advantages of carbon nanofibers having high external surface area, electrical conductivity, and lithium intercalation ability, SU-8 derived carbon nanofibers were applied to the anode of a full lithium ion cell. In this paper, we studied the physical properties of carbon fiber electrode by scanning transmission microscopy, thermal gravimetric analysis, and four-point probe. The electrochemical characteristics of the electrode were investigated by cyclic voltammogram and electrochemical impedance spectroscopy plots.

Effects of sea horse (Hippocampus abdominalis)-derived protein hydrolysate on skeletal muscle development

  • Muthuramalingam, Karthika;Kim, Jun Ho;Jeon, You Jin;Rho, Sum;Kim, Young Mee;Cho, Moonjae
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.4
    • /
    • pp.373-381
    • /
    • 2017
  • Hippocampus abdominalis, the big belly sea horse, is widely known for its medicinal value in Chinese folk medicine. In this study, extract obtained by proteolytic degradation of this species was investigated for its effects on skeletal muscle development, both in vitro and in vivo. Muscle cell lines ($C_2C_{12}$ and $L_6$) treated with the bioactive peptide did not have any detrimental effects on the cell viability, which was above 80%. Optical microscopy analysis on the morphology of the sea horse extract (SHE)-treated cells showed enhanced differentiating ability with myotube formation. Moreover, cells incubated with the hydrolysate displayed decreased proliferation rate, as recorded by the electric cell substrate impedance sensing system, thereby supporting enhanced differentiation. For a period of 12 weeks, mice models were fed with SHE and simultaneously subjected to treadmill exercise, which increased the expression of Myogenin, a key myogenic regulatory factor. In addition, there was an increase in the expression of AMPK- and Cytochrome C, both of which are important in mitochondrial biogenesis. Thus, the SHE from Hippocampus abdominalis can be a promising candidate as protein supplement aiding muscle development.