• Title/Summary/Keyword: Cell expansion

Search Result 522, Processing Time 0.025 seconds

Triphenyl phosphate as an Efficient Electrolyte Additive for Ni-rich NCM Cathode Materials

  • Jung, Kwangeun;Oh, Si Hyoung;Yim, Taeeun
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.67-73
    • /
    • 2021
  • Nickel-rich lithium nickel-cobalt-manganese oxides (NCM) are viewed as promising cathode materials for lithium-ion batteries (LIBs); however, their poor cycling performance at high temperature is a critical hurdle preventing expansion of their applications. We propose the use of a functional electrolyte additive, triphenyl phosphate (TPPa), which can form an effective cathode-electrolyte interphase (CEI) layer on the surface of Ni-rich NCM cathode material by electrochemical reactions. Linear sweep voltammetry confirms that the TPPa additive is electrochemically oxidized at around 4.83 V (vs. Li/Li+) and it participates in the formation of a CEI layer on the surface of NCM811 cathode material. During high temperature cycling, TPPa greatly improves the cycling performance of NCM811 cathode material, as a cell cycled with TPPa-containing electrolyte exhibits a retention (133.7 mA h g-1) of 63.5%, while a cell cycled with standard electrolyte shows poor cycling retention (51.3%, 108.3 mA h g-1). Further systematic analyses on recovered NCM811 cathodes demonstrate the effectiveness of the TPPa-based CEI layer in the cell, as electrolyte decomposition is suppressed in the cell cycled with TPPa-containing electrolyte. This confirms that TPPa is effective at increasing the surface stability of NCM811 cathode material because the TPPa-initiated POx-based CEI layer prevents electrolyte decomposition in the cell even at high temperatures.

CDDO-Me alleviates oxidative stress in human mesenchymal stem cells

  • Cho, Hye Jin;Kim, Tae Min
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.285-291
    • /
    • 2021
  • Mesenchymal stem cells (MSCs) have been recognized as a therapeutic tool for various diseases due to its unique ability for tissue regeneration and immune regulation. However, poor survival during in vitro expansion and after being administrated in vivo limits its clinical uses. Accordingly, protocols for enhancing cell survivability is critical for establishing an efficient cell therapy is needed. CDDO-Me is a synthetic C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid, which is known to stimulate nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway. Herein, report that CDDO-Me promoted the proliferation of MSCs and increased colony forming units (CFU) numbers. No alteration in differentiation into tri-lineage mesodermal cells was found after CDDO-Me treatment. We observed that CDDO-Me treatment reduced the cell death induced by oxidative stress, demonstrated by the augment in the expression of Nrf2-downstream genes. Lastly, CDDO-Me led to the nuclear translocation of NRF2. Our data indicate that CDDO-Me can enhance the functionality of MSCs by stimulating cell survival and increasing viability under oxidative stress.

A Structured Growth Model of Scutellaria baicalensis G. Plant Cell (Scutellaria baicalensis G. 식물 세포의 구조적 성장 모델)

  • 최정우;조진만;이정건;이원홍;김익환;박영훈
    • KSBB Journal
    • /
    • v.13 no.3
    • /
    • pp.251-258
    • /
    • 1998
  • A structured kinetic model is proposed to describe cell growth and secondary metabolite, flavone glycosides, synthesis in batch suspension culture of Scutellaria baicalensis G. The model has been developed by representing the physiological state of cell described as the activity and viability which can be estimated based on the culture fluorescence. In the model, three type of cells are considered; active-viable, nonactive-viable and dead cells. Viable cell weight could be determined based on the relative fluorescence intensity. The flavone glycosides could be produced by both active-viable and non-active viable cells with a different production rate. And the model includes the cell expansion due to glucose concentration and death phase which accounts for the release of intracellular secondary metabolite into medium. Dependent variables include substrate concentration(glucose), cell mass(dry cell weight and fresh cell weight), product concentration(flavone glycosides), activity and viability. Satisfactory agreement between the model and experimental data is obtained from shake flask culture of Scutellaria baicalensis G. The proposed model can predict the cell growth and flavone glycosides synthesis as well as intermediate materials.

  • PDF

A Novel Feeder-Free Culture System for Expansion of Mouse Spermatogonial Stem Cells

  • Choi, Na Young;Park, Yo Seph;Ryu, Jae-Sung;Lee, Hye Jeong;Arauzo-Bravo, Marcos J.;Ko, Kisung;Han, Dong Wook;Scholer, Hans R.;Ko, Kinarm
    • Molecules and Cells
    • /
    • v.37 no.6
    • /
    • pp.473-479
    • /
    • 2014
  • Spermatogonial stem cells (SSCs, also called germline stem cells) are self-renewing unipotent stem cells that produce differentiating germ cells in the testis. SSCs can be isolated from the testis and cultured in vitro for long-term periods in the presence of feeder cells (often mouse embryonic fibroblasts). However, the maintenance of SSC feeder culture systems is tedious because preparation of feeder cells is needed at each subculture. In this study, we developed a Matrigel-based feeder-free culture system for long-term propagation of SSCs. Although several in vitro SSC culture systems without feeder cells have been previously described, our Matrigel-based feeder-free culture system is time- and cost-effective, and preserves self-renewability of SSCs. In addition, the growth rate of SSCs cultured using our newly developed system is equivalent to that in feeder cultures. We confirmed that the feeder-free cultured SSCs expressed germ cell markers both at the mRNA and protein levels. Furthermore, the functionality of feeder-free cultured SSCs was confirmed by their transplantation into germ cell-depleted mice. These results suggest that our newly developed feeder-free culture system provides a simple approach to maintaining SSCs in vitro and studying the basic biology of SSCs, including determination of their fate.

Differential Effect of MyD88 Signal in Donor T Cells on Graft-versus-Leukemia Effect and Graft-versus-Host Disease after Experimental Allogeneic Stem Cell Transplantation

  • Lim, Ji-Young;Ryu, Da-Bin;Lee, Sung-Eun;Park, Gyeongsin;Choi, Eun Young;Min, Chang-Ki
    • Molecules and Cells
    • /
    • v.38 no.11
    • /
    • pp.966-974
    • /
    • 2015
  • Despite the presence of toll like receptor (TLR) expression in conventional $TCR{\alpha}{\beta}$ T cells, the direct role of TLR signaling via myeloid differentiation factor 88 (MyD88) within T lymphocytes on graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) effect after allogeneic stem cell transplantation (allo-SCT) remains unknown. In the allo-SCT model of C57BL/6 ($H-2^b$) ${\rightarrow}$ B6D2F1 ($H-2^{b/d}$), recipients received transplants of wild type (WT) T-cell-depleted (TCD) bone marrow (BM) and splenic T cells from either WT or MyD88 deficient (MyD88KO) donors. Host-type ($H-2^d$) P815 mastocytoma or L1210 leukemia cells were injected either subcutaneously or intravenously to generate a GVHD/GVL model. Allogeneic recipients of MyD88KO T cells demonstrated a greater tumor growth without attenuation of GVHD severity. Moreover, GVHD-induced GVL effect, caused by increasing the conditioning intensity was also not observed in the recipients of MyD88KO T cells. In vitro, the absence of MyD88 in T cells resulted in defective cytolytic activity to tumor targets with reduced ability to produce IFN-${\gamma}$ or granzyme B, which are known to critical for the GVL effect. However, donor T cell expansion with effector and memory T-cell differentiation were more enhanced in GVHD hosts of MyD88KO T cells. Recipients of MyD88KO T cells experienced greater expansion of Foxp3- and IL4-expressing T cells with reduced INF-${\gamma}$ producing T cells in the spleen and tumor-draining lymph nodes early after transplantation. Taken together, these results highlight a differential role for MyD88 deficiency on donor T-cells, with decreased GVL effect without attenuation of the GVHD severity after experimental allo-SCT.

Ex vivo Expansion and Clonal Maintenance of CD34+ Selected Cells from Cord Blood and Peripheral Blood (제대혈 및 말포혈로부터 분리한 CD34 양성 세포의 체외 증폭 및 클론 유지)

  • Kim, Soon Ki;Ghil, Hye Yoon;Song, Sun U.;Choi, Jong Weon;Park, Sang Kyu
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.8
    • /
    • pp.894-900
    • /
    • 2005
  • Purpose : Because of the unavailability of marrow transplantation, umbilical cord blood (CB) is increasingly being used. We evaluated the potential of ex vivo expansion and clonality in CD34+ cells separated from cord blood source and mobilized peripheral blood (PB) in a serum-free media. Methods : The CD34+ cells, selected from CB and mobilized PB, were expanded with hematopoietic growth factors. They were then cultured for burst-forming units of erythrocytes (BFU-E), colony-forming units of granulocytes and monocytes (CFU-GM) and colony-forming units of megakaryocytes (CFU-Mk) at culture days 0, day 4, day 7, and day 14 with various growth factors. Results : The CB-selected CD34+ cells showed significantly higher total cell expansion than those from the PB at day 7 (2 fold increase than PB). The CB-selected CD34+ cells produced more BFU-E colonies than did the PB on culture at days 7 and at day 14. Also, the CB-selected CD34+ cells produced more CFU-Mk colonies than did the PB on culture at day 4 and at day 7. Conclusion : The ex vivo expansion of the CB cells may be promising in producing total cellular expansion, CFU-Mk and BFU-E compared with PB for 7 to 14 days. The growth factors combination including megakaryocyte growth and development, flt3-ligand and interleukin-3 showed more expansion in the view of total cells and clonal maintenance compared with less combination.

A Simple, Reliable, and Inexpensive Intraoperative External Expansion System for Enhanced Autologous Structural Fat Grafting

  • Oranges, Carlo M.;Tremp, Mathias;Ling, Barbara;Wettstein, Reto;Largo, Rene D.;Schaefer, Dirk J.
    • Archives of Plastic Surgery
    • /
    • v.43 no.5
    • /
    • pp.466-469
    • /
    • 2016
  • External volume expansion of the recipient site by suction has been proposed as a way of improving fat graft survival. The objective of this study was to present an innovative and simple intraoperative external expansion system to enhance small-volume autologous fat grafting (40-80 mL) and to discuss its background and its mechanism of action. In this system, expansion is performed using a complete vacuum delivery system known as the Kiwi VAC-6000M with a PalmPump (Clinical Innovations). The recipient site is rapidly expanded intraoperatively 10 times for 30 seconds each with a negative pressure of up to 550 mm Hg before autologous fat injection. During this repetitive stimulation, the tissues become grossly expanded, developing macroscopic swelling that regresses slowly over the course of hours following the cessation of the stimulus. The system sets various mechanisms in motion, including scar release, mechanical stimulation, edema, ischemia, and inflammation, which provide an environment conducive for cell proliferation and angiogenesis. In order to maintain the graft construct in its expansive state, all patients are encouraged postoperatively to use the Kiwi three times daily for one minute per session over the course of three days. The handling of this system is simple for both the patients and the surgeon. Satisfactory clinical outcomes have been achieved without significant complications.

A Study on the Characteristics of the Adiabatically Expanded Polyolefin Structured Foams (단열 발포 폴리올레핀계 구조체의 특성에 관한 연구)

  • Hwang Jun-Ho;Kim Woo-nyon;Jun Jae-Ho;Kwak Soon-Jong;Hwang Seung-Sang;Hong Soon-Man
    • Polymer(Korea)
    • /
    • v.29 no.6
    • /
    • pp.605-612
    • /
    • 2005
  • This study investigates the isothermal crystallization behaviors of polypropylene-polyethylene-(1-butene) terpolymer and the adiabatically expanded polyolefin structured foams. For this purpose, butane gas was used as a physical blowing agent. Avrami equation has been used to interpret theoretically the experimental results obtained by either DSC or polarized optical microscope. It is believed that elongation induced crystallization occurring during the adiabatic expansion process has resulted in an increase in crystallization rate, eventually leading to a faster growth rate of spherulites and an increase in the nucleation density. An analysis of the foam by SEM images showed that the structure of foam is uniform (below diameter 30 $\mu$m closed cell) In addition, the thermal conductivity and the compressive strength of the polyolefin structured foams was measured. The thermal conductivity of foamed resin with excellent insulation characteristics is reduced compared with unfoamed resin. The compressive strength is decreased with increase in the expansion ratio.

Effects of epigallocatechin-3-gallate on bovine oocytes matured in vitro

  • Huang, Ziqiang;Pang, Yunwei;Hao, Haisheng;Du, Weihua;Zhao, Xueming;Zhu, Huabin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.9
    • /
    • pp.1420-1430
    • /
    • 2018
  • Objective: Epigallocatechin-3-gallate (EGCG) is a major ingredient of catechin polyphenols and is considered one of the most promising bioactive compounds in green tea because of its strong antioxidant properties. However, the protective role of EGCG in bovine oocyte in vitro maturation (IVM) has not been investigated. Therefore, we aimed to study the effects of EGCG on IVM of bovine oocytes. Methods: Bovine oocytes were treated with different concentrations of EGCG (0, 25, 50, 100, and $200{\mu}M$), and the nuclear and cytoplasmic maturation, cumulus cell expansion, intracellular reactive oxygen species (ROS) levels, total antioxidant capacity, the early apoptosis and the developmental competence of in vitro fertilized embryos were measured. The mRNA abundances of antioxidant genes (nuclear factor erythriod-2 related factor 2 [NRF2], superoxide dismutase 1 [SOD1], catalase [CAT], and glutathione peroxidase 4 [GPX4]) in matured bovine oocytes were also quantified. Results: Nuclear maturation which is characterized by first polar body extrusion, and cytoplasmic maturation characterized by peripheral and cortical distribution of cortical granules and homogeneous mitochondrial distribution were significantly improved in the $50{\mu}M$ EGCG-treated group compared with the control group. Adding $50{\mu}M$ EGCG to the maturation medium significantly increased the cumulus cell expansion index and upregulated the mRNA levels of cumulus cell expansion-related genes (hyaluronan synthase 2, tumor necrosis factor alpha induced protein 6, pentraxin 3, and prostaglandin 2). Both the intracellular ROS level and the early apoptotic rate of matured oocytes were significantly decreased in the $50{\mu}M$ EGCG group, and the total antioxidant ability was markedly enhanced. Additionally, both the cleavage and blastocyst rates were significantly higher in the $50{\mu}M$ EGCG-treated oocytes after in vitro fertilization than in the control oocytes. The mRNA abundance of NRF2, SOD1, CAT, and GPX4 were significantly increased in the $50{\mu}M$ EGCG-treated oocytes. Conclusion: In conclusion, $50{\mu}M$ EGCG can improve the bovine oocyte maturation, and the protective role of EGCG may be correlated with its antioxidative property.

Effects of Moisture Content and CO2 Gas Injection on Physicochemical Properties of Extruded Soy Protein Isolate (수분함량과 CO2 가스 주입에 따른 분리대두단백 압출성형물의 이화학적 특성)

  • Kim, Na Yeong;Ryu, Gi Hyung
    • Food Engineering Progress
    • /
    • v.21 no.2
    • /
    • pp.150-157
    • /
    • 2017
  • The objective of this study was to determine the effect of moisture contents (40, 50, 60%) and $CO_2$ gas injection (0 and 800 mL/min) on physicochemical properties of extruded soy protein isolate (SPI). The expansion ratio and the specific length increased, but piece density decreased with the increase in $CO_2$ gas injection from 0 to 800 mL/min at both 40 and 50% moisture contents. On the contrary, the expansion ratio and the specific length decreased, but piece density increased with the increase in $CO_2$ gas injection from 0 to 800 mL/min at 60% moisture content. Extruded SPI with $CO_2$ gas injection at 800 mL/min had small cell size and higher amount of cell than extruded SPI without $CO_2$ gas injection. The water holding capacity and nitrogen solubility index increased, and the integrity index and the texture decreased with the increase in $CO_2$ gas injection from 0 to 800 mL/min. In conclusion, extruded SPI with the $CO_2$ gas injection at 800 mL/min showed better expansion properties and cell formation than extruded SPI without the $CO_2$ gas injection.