• Title/Summary/Keyword: Cell adhesion

Search Result 1,105, Processing Time 0.03 seconds

CELL-MATRIX ADHESIONS OF SOFT TISSUE CELLS AROUND DENTAL IMPLANTS (임플랜트 주위 연조직세포의 세포-기질 접착)

  • Lee Suk-Won;Rhyu In-Chul;Han Chong-Hyun;Lee Jai-Bong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.1
    • /
    • pp.73-84
    • /
    • 2006
  • The importance of soft tissue response to implant abutments has become one of the major issues in current implant dentistry. To date, numerous studies have emphasized on maintaining connective tissue barriers in quantity, as well as in quality fir the long term success of dental implants. The cells mainly consisting the soft tissue around dental implants are fibroblasts and epithelial cells. The mechanism of the fibroblasts adhesions to certain substrata can be explained by the 'focal adhesion' theory. On the other hand, epithelial cells adhere tn the substratum via hemidesmosomes. The typical integrin-mediated adhesions of cells to certain matrix are called 'cell-matrix adhsions'. The focal adhesion complex of fibroblasts, in relation to the cell-matrix adhsions, consists of the extracellular matrix(ECM) such as fibronectin, the transmembrane proteins such as integrins, the intracellular cytoplasmic proteins such as vinculin, talin, and more, and the cytoskeletal structures such as filamentous actin and microtubules. The mechanosensory function of integrins and focal adhesion complexes are considered to play a major role in the cells adhesion, migration, proliferation, differentiation, division, and even apoptosis. The '3-D matrix adhesions' defined by Cukierman et al. makes a promising future for the verification of the actual process of the cell-matrix adhesions in vivo and can be applied to the field of implant dentistry in relation to obtaining strong soft tissue attachment to the implant abutments.

Manassantin A and B Isolated from Saururus chinensis Inhibit $TNF-{\alpha}-Induced$ Cell Adhesion Molecule Expression of Human Umbilical Vein Endothelial Cells

  • Kwon Oh Eok;Lee Hyun Sun;Lee Seung Woong;Chung Mi Yeon;Bae Ki Hwan;Rho Mun-Chual;Kim Young-kook
    • Archives of Pharmacal Research
    • /
    • v.28 no.1
    • /
    • pp.55-60
    • /
    • 2005
  • Leukocyte adhesion to the vascular endothelium is a critical initiating step in inflammation and atherosclerosis. We have herein studied the effect of manassantin A (1) and S (2), dineolignans, on interaction of THP-1 monocytic cells and human umbilical vein endothelial cells (HUVEC) and expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin in HUVEC. When HUVEC were pretreated with 1 and 2 followed by stimulation with $TNF-{\alpha}$, adhesion of THP-1 cells to HUVEC decreased in dose-dependent manner with $IC_{50}$ values of 5 ng/mL and 7 ng/mL, respectively, without cytotoxicity. Also, 1 and 2 inhibited $TNF-{\alpha}-induceda$ up-regulation of ICAM-1, VCAM-1 and E-selectin. The present findings suggest that 1 and 2 prevent monocyte adhesion to HUVEC through the inhibition of ICAM-1, VCAM-1 and E-selectin expression stimulated by $TNF-\alpha$, and may imply their usefulness for the prevention of atherosclerosis relevant to endothelial activation.

THE ADHESION OF ODONTOBLAST TO TYPE I COLLAGEN (상아모세포의 I 형 아교질에 대한 부착)

  • Ahn, Myung-Ki;Jeong, Tae-Sung;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.37 no.3
    • /
    • pp.308-316
    • /
    • 2010
  • Odontoblasts are anchorage dependent cells adhering to a substrate via cell adhesive molecules. Receptor ligands such as integrins bind to these proteins and are known to function as signal transduction molecules in a series of critical recognition events of cell-substratum. The aim of this study is to examine the interaction of odontoblast (MDPC-23 cell) with type I Col and the effect of TGF-${\beta}1$ and TNF-$\alpha$ on the expression of cell adhesion molecules. In this study, MDPC-23 cells adhered to type I Col dose-dependently. Immunofluorescence data demonstrated that integrin ${\alpha}1$, ${\alpha}2$ and CD44 were expressed on cell surface, and FAK and paxillin were localized in focal adhesion plaques in MDPC-23 cells adhesion to Col. Cytokine TGF-${\beta}1$ increased the adhesion of MDPC-23 cells to Col and the expression level of integrin ${\alpha}1$, 4{\alpha}2$ and chondroitin sulfate on MDPC-23 cells. RT-PCR data demonstrated that cytokine TGF-${\beta}1$ increased the amount of integrin ${\alpha}1$ mRNA in MDPC-23 cells. Therefore, MDPC-23 cells adhere to collagen type I Col and expressed a complex pattern of integrins and proteoglycans, including ${\alpha}1$, ${\alpha}2$, chondroitin sulfate and CD44 detected by immunoblotting and immunofluorescence assay. TGF-${\beta}1$ treatment enhanced the expression of adhesion molecules such as integrin ${\alpha}1$, ${\alpha}2$ and chondroitin sulfate.

Hydrolysis of Phosphatidyicholine to Initiate HeLa Cell Adhesion to a Gelatin Substratum (Phosphatidylcholine의 분해에 의한 Hela 세포와 Gelatin 기질과의 상호작용의 유도)

  • ;;;;;Bruce S. Jacobson
    • The Korean Journal of Zoology
    • /
    • v.38 no.4
    • /
    • pp.457-464
    • /
    • 1995
  • Hela cells, a transformed human epithelial cell line, attach to various substrata but subsequent spreading is specific to collagen or gelatin. The spreading is initiated by the activation of phospholipase $A_2$ (PLA$_2$) which produces arachidonic acid (AA) as a consequence of cell surface collagen receptor clustering. This study examines the mechanism of PLA$_2$activation and which phospholipids are hydrolyzed by PIA$_2$ to release AA in response to Hela cell adhesion to a gelatin substratum. The levels of phosphatidyicholine decreases, among various phospholipids, during attachment and spreading of Hela cells. Lysophosphatidyicholine Is the only lysophospholipids formed during ileLa cell adhesion indicating that clustered collagen receptors activate PLA$_2$to hydrolyze posphatidylcholine to AA and lysophosphatidylcholine. Among various molecular entitles which are known to regulate PLA$_2$ activation, we have previously shown that PLA2 activation is not mediated by either changes in $Ca_2$+ levels, alkalinization of cytoplasmic p11, or activation of protein hinase C. It is also likely that PIA2 activation is not mediated by either pertussis or cholera toxinsensitive G proteins as those toxins do not affect both AA release and cell spreading.

  • PDF

Suppression of Human Fibrosarcoma Cell Metastasis by Phyllanthus emblica Extract in Vitro

  • Yahayo, Waraporn;Supabphol, Athikom;Supabphol, Roongtawan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6863-6867
    • /
    • 2013
  • Phyllanthus emblica (PE) is known to exhibit various pharmacological properties. This study aimed to evaluate the antimetastatic potential of a PE aqueous extract. Cytotoxicity to human fibrosarcoma cells, HT1080, was determined by viability assay using the 3-(4,5-dimethylthiazol,2-yl)-2,5-diphenyltetrazolium bromide (MTT) reagent. Cell migration and invasion were investigated using chemotaxis chambers containing membranes precoated with collagen IV and Matrigel, respectively. Cell attachment onto normal surfaces of cell culture plates was tested to determine the cell-adhesion capability. The molecular mechanism of antimetastatic activity was assessed by measuring the gene expression of matrix metalloproteinases, MMP2, and MMP9, using reverse transcription-polymerase chain reaction (RT-PCR) assay. The mRNA levels of both genes were significantly down-regulated after pretreatment with PE extract for 5 days. Our findings show the antimetastatic function of PE extract in reducing cell proliferation, migration, invasion, and adhesion in both dose- and time-dependent manners, especially growth arrest with low $IC_{50}$ value. A decrease in the expression of both MMP2 and MMP9 seems to be the cellular mechanism for antimetastasis in this case. There is a high potential to use PE extracts clinically as an optional adjuvant therapeutic drug for therapeutic intervention strategies in cancer therapy or chemoprevention.

Effects of the Chestnut Inner Shell Extract on the Expression of Adhesion Molecules, Fibronectin and Vitronectin, of Skin Fibroblasts in Culture

  • Chi, Yeon-Sook;Heo, Moon-Young;Chung, Ji-Hun;Jo, Byoung-Kee;Kim, Hyun-Pyo
    • Archives of Pharmacal Research
    • /
    • v.25 no.4
    • /
    • pp.469-474
    • /
    • 2002
  • The inner shell of the chestnut (Castanea crenata S. et Z., Fagaceae) has been used as an anti-wrinkle/skin firming agent in East Asia, and preliminary experiments have found that a 70% ethanol extract from this plant material can prevent cell detachment of skin fibroblasts from culture plates. In order to examine the molecular mechanisms underlying this phenomenon, its effects on the expression of adhesion molecules, such as fibronectin and vitronectin, were investigated using the mouse skin fibroblast cell line, NIH/3T3. Using fixed-cell ELISA, Western blotting and immunofluorescence cell staining, it was clearly demonstrated that the chestnut inner shell extract enhanced the expression of the cell-associated fibronectin and vitronectin. Scoparone (6,7-dimethoxycoumarin), isolated from the extract, also possessed similar properties. These findings suggest that the enhanced expression of the adhesion molecules may be one of the molecular mechanisms for how the chestnut inner shell extract preventing cell detachment and may be also responsible for its anti-wrinkle/skin firming effect.

Bovine Lactoferricin Induces Intestinal Epithelial Cell Activation through Phosphorylation of FAK and Paxillin and Prevents Rotavirus Infection

  • Jeong, Ye Young;Lee, Ga Young;Yoo, Yung Choon
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1175-1182
    • /
    • 2021
  • We investigated the effect of bovine lactoferricin (Lfcin-B), a peptide derived from bovine lactoferrin, on activation of intestinal epithelial cells in IEC-6 intestinal cell, and protection against in vivo rotavirus (RV) infection. Treatment with Lfcin-B significantly enhanced the growth of IEC-6 cells and increased their capacity for attachment and spreading in culture plates. Also, Lfcin-B synergistically augmented the binding of IEC-6 cells to laminin, a component of the extracellular matrix (ECM). In the analysis of the intracellular mechanism related to Lfcin-B-induced activation of IEC-6 cells, this peptide upregulated tyrosine-dependent phosphorylation of focal adhesion kinase (FAK) and paxillin, which are intracellular proteins associated with cell adhesion, spreading, and signal transduction during cell activation. An experiment using synthetic peptides with various sequences of amino acids revealed that a sequence of 9 amino acids (FKCRRWQWR) corresponding to 17-25 of the N-terminus of Lfcin-B is responsible for the epithelial cell activation. In an in vivo experiment, treatment with Lfcin-B one day before RV infection effectively prevented RV-induced diarrhea and significantly reduced RV titers in the bowels of infected mice. These results suggest that Lfcin-B plays meaningful roles in the maintenance and repair of intestinal mucosal tissues, as well as in protecting against intestinal infection by RV. Collectively, Lfcin-B is a promising candidate with potential applications in drugs or functional foods beneficial for intestinal health and mucosal immunity.

Influence of Surface Treatment on Adhesion between Pt Nanoparticle and Carbon Support

  • Kim, Jong Hun;Choi, Han Shin;Yuk, Youngji;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.598-598
    • /
    • 2013
  • The short lifetime of Proton Exchange Membrane Fuel Cell (PEMFC) is the one of the main problems to be solved for commercializing. Especially, the weak adhesion between metal nanoparticles and supports deteriorate the performances of nanocatalysts, therefore, it is considered to be a major failure mechanism. Using force-distance spectroscopy of atomic force microscopy (AFM), we characterized the adhesion between Pt nanoparticles and carbon supports that is crucially related to the durability for membrane fuel cell (MFC) electrode. In our study, force distance curves measured with Pt coated AFM cantilever, mimicking the behavior of corresponding nanoparticles on carbon supports, leads to the adhesion between metal nanoparticles and carbon supports. We found that theadhesion between Pt and HNO3-treated carbon is enhanced by a factor of 4, compared to Pt and bare carbon support, that is consistent with the macroscopic durability test of PEMFC. The higher adhesion between Pt and HNO3-treated carbon can be explained in light of the stronger chemical interaction by C/O functional groups.

  • PDF

Effect of Rutin on Adhesion Molecules Expression and NO Production Induced by $\gamma$-irradiation in Human Endothelial cells

  • Son, Eun-Wha;Lee, Kang-Ro;Rhee, Dong-Kwon;Pyo, Suh-Kneung
    • Biomolecules & Therapeutics
    • /
    • v.9 no.3
    • /
    • pp.156-161
    • /
    • 2001
  • Inflammation is a frequent radiation-induced following therapeutic irradiation. Treatment of human umbilical endothelial cells (HUVEC) with ${\gamma}$-irradiation (${\gamma}$IR) induces the expression of adhesion proteins such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin. Since the upregulation of these proteins on endothelial cell surface has been known to be associated with inflammation, interfering with the expression of adhesion molecules is an important therapeutic target. In the present study, we demonstrate that bioflavonoid rutin inhibits ${\gamma}$IR induced expression of ICAM-1, VCAM-1, and E-selectin on HUVEC in a dose- and time dependent manner. Rutin also inhibited ${\gamma}$IR induced production of NO. These data suggest that rutin has therapeutic potential for the treatment of various inflammatory disorder associated with an increase of endothelial leukocyte adhesion molecules.

  • PDF

Inhibition of $\gamma$-Irradiation Induced Adhesion Molecules and NO Production by Alginate in Human Endothelial Cells

  • Son, Eun-Wha;Cho, Chul-Koo;Rhee, Dong-Kwon;Pyo, Suhk-Neung
    • Archives of Pharmacal Research
    • /
    • v.24 no.5
    • /
    • pp.466-471
    • /
    • 2001
  • Inflammation is a frequent radiation-induced reaction following therapeutic irradiation. Treatment of human umbilical endothelial cells (HUVEC) with $\gamma$-irradiation ($\gamma$IR) induces the expression of adhesion proteins such as intercellular adhesion molecule-1 (VCAM-1 ), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin. Since the upregulation of these proteins on endothelial cell surface has been known to be associated with inflammation, interioring with the expression of adhesion molecules is an important therapeutic target. In the present study, we demonstrate that high mannronic acid-containing alginate (HMA) inhibits $\gamma$IR induced expression of ICAM-1, VCAM-1, and E-selectin on HUVEC in a dose dependent manner. HMA also inhibited $\gamma$IR induced production of Nitric oxide (NO). These data suggest that HMA has therapeutic potential for the treatment of various inflammatory disorder associated with an increase of endothelial leukocyte adhesion molecules.

  • PDF