• Title/Summary/Keyword: Cell Line Production Line

Search Result 792, Processing Time 0.024 seconds

Somatic embryo induction and plant regeneration from cold-stored embryogenic callus of K. septemlobus (저온저장 음나무 배발생 캘러스로부터 체세포배 유도와 식물체 재생)

  • Lee, Na Nyum;Choi, Yong Eui;Moon, Heung Kyu
    • Journal of Plant Biotechnology
    • /
    • v.42 no.4
    • /
    • pp.388-395
    • /
    • 2015
  • Somatic embryogenesis is as an excellent technology for potential use in plant mass production, germplasm conservation, or genetic engineering. We examined the effect of cold storage using 3 embryogenic callus lines with different levels of embryogenesis competence derived from immature zygotic embryo cultures of Kalopanax setemlobus. Somatic embryo induction, germination and plant conversion were evaluated after 1, 3 and 6 months storage at $4^{\circ}C$ in the dark. Most cold-stored embryogenic calli formed somatic embryos normally even after 6 months; however, the induction rate was gradually decreased by increasing the storage period. The most competent line tended to show a slight decline in somatic embryo induction rate, as compared with other lines after cold storage. In general, cold storage resulted in reduced somatic embryo germination and plant regeneration, although 93% somatic embryo germination and 91% plant conversion were achieved regardless of the storage period. Cold storage led to cell browning and degradation. Additionally, the cell structures were confirmed by the aceto-carmine and evans blue dye evaluation. Collectively, our results showed that embryogenic callus of K. septemlobus could be preserved at $4^{\circ}C$ without subculture for 6 months, and suggested the need for storage of relatively more competent embryogenic calli lines to support somatic embryo induction.

Influence of Reactive Oxygen Species Produced by Chlorine Dioxide on Induction of Insect Cell Apoptosis (이산화염소의 활성산소 유발에 따른 곤충 세포의 아폽토시스)

  • Kim, Minhyun;Kumar, Sunil;Kwon, Hyeok;Kim, Wook;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.55 no.3
    • /
    • pp.267-275
    • /
    • 2016
  • Chlorine dioxide has an insecticidal activity via its production of reactive oxygen species (ROS). Its cytotoxic activity has been regarded as a main cause of the insecticidal activity. This study tested a hypothesis that cytotoxicity of chlorine dioxide is resulted from its induction of apoptosis against target cells using ROS. Injection of chlorine dioxide significantly reduced total hemocyte counts of Plodia interpunctella larvae and subsequently killed the larvae. To analyze the cytotoxicity with respect to apoptosis, terminal deoxyribonucleotidyl transferase nick end translation (TUNEL) assay was performed. An insect cell line (Sf9) cells were exposed to different concentrations of chlorine dioxide. TUNEL assay showed that chlorine dioxide induced significant apoptosis of Sf9 cells in a dose-dependent manner. When different concentrations of chlorine dioxide were injected to larvae of P. interpunctella, it showed a dose-dependent induction of apoptosis against hemocytes. However, addition of vitamin E significantly suppressed the apoptosis induction and insecticidal activity of chlorine dioxide in a dose-dependent manner. These results suggest that cytotoxicity of chlorine dioxide is resulted from its induction of apoptosis against insect cells using ROS.

Studies on the Anti-inflammatory Activity of Paulownia coreana Uyeki Leaf Extract (오동나무 잎 추출물의 항염 효능에 관한 연구)

  • Kim, Nam-Kyoung;Kim, Mi-Hwa;Yoon, Chang-Soon;Choi, Shin-Wook
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.4 s.59
    • /
    • pp.241-247
    • /
    • 2006
  • This work was carried out to investigate the anti-inflammatory effects of Paulownia coreana Uyeki on abirritant, atopy and acne skin. Paulownia coreana Uyeki has been used as a traditional medicine having anti-febrile, anti-inflammation effect in Korea, Paulownia coreana Uyeki loaves were extracted with 70% EtOH. Its superoxide anion radical scavenging activity and inhibitory effect on LPS-induced NO production were examined. The extract inhibitied the generation of NO and $PGE_2$ induced by LPS in the macrophage cell line (Raw 264.7). Consistent with the inhibitory effects on No and $PGE_2$ generation, the extract inhibited expression of iNOS and COX-2. In further study, it was found that the extract prevented $IkB-{\alpha}$ degradation, as demonstrated by western blot analysis of $IkB-{\alpha}$ protein level. However, the extract treatment did not affect cell viability at $100{\mu}g/mL$ concentration in both human skin fibroblast and Raw 264.7 cells in vitro. Thus, the present study suggests that Paulownia coreana Uyeki leaves extract have significant anti-inflammatory activity and potential as an anti-irritation material.

Anti-inflammatory Effect of Onion (Allium cepa) Peel Hot Water Extract in vitro and in vivo (양파껍질 열수추출물의 in vitro 및 in vivo 항염증 효과)

  • Kang, Bo-Kyeong;Kim, Koth-Bong-Woo-Ri;Ahn, Na-Kyung;Choi, Yeon-Uk;Kim, Min-ji;Bark, Si-Woo;Pak, Won-Min;Kim, Bo-Ram;Park, Ji-Hye;Bae, Nan-Young;Ahn, Dong-Hyun
    • KSBB Journal
    • /
    • v.30 no.4
    • /
    • pp.148-154
    • /
    • 2015
  • Onion (Allium cepa) is one of the flavonoids-rich materials in human diet and onion peel, which is the onion by-products, contains over 20 times more quercetin than the flesh. In this study, to examine the anti-inflammatory effects of onion peel hot water extract (OPHWE), the cell viability, nitric oxide (NO), pro-inflammatory cytokines, such as interluekin-6 (IL-6), tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), and IL-$1{\beta}$, were measured using the murine macrophage cell line RAW 264.7 cells. The Balb/c mice were used for an in vivo acute toxicity test and ICR mice were used for measurement of inhibition effects of croton oil-induced mouse ear edema. As a result, NO levels decreased in a dose-dependent manner. The production of IL-6, TNF-${\alpha}$, and IL-$1{\beta}$ was suppressed by 38%, 41%, and 34% respectively, compared with that of the LPS only group, without any cytotoxicity. The edema formation in the ICR mouse ear was also reduced compared to that in control. Moreover, there were no mortalities occurred in mice administered 5,000 mg/kg body weight of OPHWE. These results suggest that OPHWE has considerable anti-inflammatory activities and can be regarded as a potent candidate material to treat inflammatory diseases.

In vitro Culture Response to NaCl of Korean Ginseng (Panax ginseng C.A. Meyer) Tissues (기내배양을 통한 고려인삼(Panax ginseng C.A. Meyer)조직의 NaCl에 대한 반응)

  • Yoon Jae-Ho;Song Won-Seob;Lee Mee Sook;Shin Dong-il;Yang Deok Chun
    • Korean Journal of Plant Resources
    • /
    • v.18 no.1
    • /
    • pp.123-130
    • /
    • 2005
  • High salt concentrations in the ginseng nursery soil environment of Korea is one of important reducing factors for the stable production of quality ginseng. These studies were accomplished for check the response on germination of ginseng seed, somatic embryogenesis of zygotic embryo, and biosynthesis of ginsenoside from ginseng hairy root against NaCl. Ratio of germination was at the $3\%\;and\;84.5\%$ on the basic media with 0.1M and free of NaCl repectedly, but $0\%$ at the upper of 0.2M NaCl. Somatic embryogenesis from zygotic embryo were the highest when immatured embryo was cultured on free of NaCl concentration, and which was intend to decrease at treatment of NaCl. However, in case of using the matured embryo, treatment of 0.05M NaCl resulted in better embryogenesis than NaCl free media. Red pigment was synthesized from ginseng hairy root cultured on the medium with various NaCl concentration(from 0.04 to 0.08M) and its pigment was analyzed as spectrum of anthocyane by spectrophoto- meter scanning. This cell line biosynthesized lots of crude saponin and total ginsenoside than other cell lines, also had 2 times of panaxadiol than panaxatriol.

Antioxidant and Anti-inflammatory Effect of Pyracantha Angustifolia Fruit Extracts (적양자 추출물의 항산화 및 항염 효능)

  • Yang, Yang;Lee, Ji-An
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.12
    • /
    • pp.294-301
    • /
    • 2019
  • This study evaluated the antioxidant activity and the anti-inflammatory activity of ethanol extracted Pyracantha angustifolia (PE) or hot water extracted P. angustifolia (PW) using natural plant sources. In the DPPH and ABTS assay, the PE extracts showed the highest activity with an IC50 of 3.78 ㎍/mL, IC50 of 510.57 ㎍/mL, respectively. The total polyphenol content of PE extracts was 37.11±0.01 mgGAE/mL and PW extracts was 11.46±0.01 mgGAE/mL in a 1 mg/mL. The MTT assay showed no cytotoxicity at all concentration of two extracts in mouse macrophage cell line, RAW264.7. In addition, PE extracts strongly inhibited the production of NO, TNF-α cytokine secretion, and iNOS/TNF-α mRNA expression stimulated by LPS in RAW264.7 cells. Taken together, these results suggest that P. angustifolia, especially the ethanol extracts (PE), can be used as a cosmetic material containing natural antioxidant and anti-inflammatory properties.

Role of stearyl-coenzyme A desaturase 1 in mediating the effects of palmitic acid on endoplasmic reticulum stress, inflammation, and apoptosis in goose primary hepatocytes

  • Tang, Bincheng;Qiu, Jiamin;Hu, Shenqiang;Li, Liang;Wang, Jiwen
    • Animal Bioscience
    • /
    • v.34 no.7
    • /
    • pp.1210-1220
    • /
    • 2021
  • Objective: Unlike mammals, goose fatty liver shows a strong tolerance to fatty acids without obvious injury. Stearyl-coenzyme A desaturase 1 (SCD1) serves crucial role in desaturation of saturated fatty acids (SAFs), but its role in the SAFs tolerance of goose hepatocytes has not been reported. This study was conducted to explore the role of SCD1 in regulating palmitic acid (PA) tolerance of goose primary hepatocytes. Methods: 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide was examined to reflect the effect of PA on hepatocytes viability, and quantitative polymerase chain reaction was used to detect the mRNA levels of several genes related to endoplasmic reticulum (ER) stress, inflammation, and apoptosis, and the role of SCD1 in PA tolerance of goose hepatocytes was explored using RNA interfere. Results: Our results indicated that goose hepatocytes exhibited a higher tolerant capacity to PA than human hepatic cell line (LO2 cells). In goose primary hepatocytes, the mRNA levels of fatty acid desaturation-related genes (SCD1 and fatty acid desaturase 2) and fatty acid elongate enzyme-related gene (elongase of very long chain fatty acids 6) were significantly upregulated with 0.6 mM PA treatment. However, in LO2 cells, expression of ER stress-related genes (x box-binding protein, binding immunoglobulin protein, and activating transcription factor 6), inflammatory response-related genes (interleukin-6 [IL-6], interleukin-1β [IL-1β], and interferon-γ) and apoptosis-related genes (bcl-2-associated X protein, b-cell lymphoma 2, Caspase-3, and Caspase-9) was significantly enhanced with 0.6 mM PA treatment. Additionally, small interfering RNA (siRNA) mediated downregulation of SCD1 significantly reduced the PA tolerance of goose primary hepatocytes under the treatment of 0.6 mM PA; meanwhile, the mRNA levels of inflammatory-related genes (IL-6 and IL-1β) and several key genes involved in the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT), forkhead box O1 (FoxO1), mammalian target of rapamycin and AMPK pathways (AKT1, AKT2, FoxO1, and sirtuin 1), as well as the protein expression of cytochrome C and the apoptosis rate were upregulated. Conclusion: In conclusion, our data suggested that SCD1 was involved in enhancing the PA tolerance of goose primary hepatocytes by regulating inflammation- and apoptosis-related genes expression.

Growth factors improve the proliferation of Jeju black pig muscle cells by regulating myogenic differentiation 1 and growth-related genes

  • Park, Jinryong;Lee, Jeongeun;Song, Ki-Duk;Kim, Sung-Jo;Kim, Dae Cheol;Lee, Sang Cheol;Son, Young June;Choi, Hyun Woo;Shim, Kwanseob
    • Animal Bioscience
    • /
    • v.34 no.8
    • /
    • pp.1392-1402
    • /
    • 2021
  • Objective: The growth rate of pigs is related to differentiation and proliferation of muscle cells, which are regulated by growth factors and expression of growth-related genes. Thus, the objective of this study was to establish optimal culture conditions for Jeju black pig (JBP) muscle cells and determine the relationship of various factors involved in muscle growth with the proliferation of JBP muscle cells. Methods: Muscles were taken from the femur skeletal muscle of JBP embryos. After isolation of the muscle cells, cells were cultured in a 6-well plate under four different culture conditions to optimize culture conditions for JBP muscle cells. To analyze proliferation rate of JBP muscle cells, these muscle cells were seeded into 6-well plates at a density of 1.5×105 cells per well and cultured for 3 days. Western blot and quantitative real-time polymerase chain reaction were applied to verify the myogenic differentiation 1 (MyoD) expression and growth-related gene expression in JBP muscle cells, respectively. Results: We established a muscle cell line from JBP embryos and optimized its culture conditions. These muscle cells were positive for MyoD, but not for paired box 7. The proliferation rate of these muscle cells was significantly higher in a culture medium containing bFGF and epidermal growth factor + basic fibroblast growth factor (EGF+bFGF) than that without a growth factor or containing EGF alone. Treatment with EGF and bFGF significantly induced the expression of MyoD protein, an important transcription factor in muscle cells. Moreover, we checked the changes of expression of growth-related genes in JBP muscle cells by presence or absence of growth factors. Expression level of collagen type XXI alpha 1 gene was changed only when EGF and bFGF were added together to culture media for JBP muscle cells. Conclusion: Concurrent use of EGF and bFGF increased the expression of MyoD protein, thus regulating the proliferation of JBP muscle cells and the expression of growth-related genes.

Application of Primary Rat Corneal Epithelial Cells to Evaluate Toxicity of Particulate Matter 2.5 to the Eyes (눈에 대한 미세먼지의 독성 평가를 위한 쥐 각막 상피 세포의 적용)

  • Kim, Da Hye;Hwangbo, Hyun;Lee, Hyesook;Cheong, Jaehun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.32 no.9
    • /
    • pp.712-720
    • /
    • 2022
  • The purpose of this study was to investigate the efficacy of rat corneal-derived epithelial cells as an in vitro model to evaluate the harmfulness of the cornea caused by particulate matter 2.5 (PM2.5). To establish an experimental model for the effect of PM2.5 on corneal epithelial cells, it was confirmed that primary cultured cells isolated from rat eyes were corneal epithelial cells through pan-cytokeratin staining. Our results showed that PM2.5 treatment reduced cell viability of primary rat corneal epithelial (RCE) cells, which was associated with the induction of apoptosis. PM2.5 treatment also increased the generation of reactive oxygen species due to mitochondrial dysfunction. In addition, the production of nitric oxide and inflammatory cytokines was increased in PM2.5-treated RCE cells. Furthermore, through heatmap analysis showing various expression profiling between PM2.5-exposed and unexposed RCE cells, we proposed five genes, including BLNK, IL-1RA, Itga2b, ABCb1a and Ptgs2, as potential targets for clinical treatment of PM-related ocular diseases. These findings indicate that the primary RCE cell line is a useful in vitro model system for the study of PM2.5-mediated pathological mechanisms and that PM2.5-induced oxidative and inflammatory responses are key factors in PM2.5-induced ocular surface disorders.

Melanogenesis regulatory constituents from Premna serratifolia wood collected in Myanmar

  • WOO, SO-YEUN
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.21-22
    • /
    • 2019
  • Melanin is a mixture of pigmented biopolymers synthesized by epidermal melanocytes that determine the skin, eye, and hair colors. Melanocytes produce two different kinds of melanin, eumelanin (dark brown/black insoluble pigments found in dark skin and dark hair and pheomelanin (lighter red/yellow). The biological role of melanin is to prevent skin damage by ultraviolet (UV) radiation. However, the overproduction or deficiency of melanin synthesis could lead to serious dermatological problems, which include melasma, melanoderma, lentigo, and vitiligo. Therefore, regulating melanin production is important to prevent the pigmentation disorders. Myanmar has a rich in natural resources. However, the chemical constituents of these natural resources in Myanmar have not been fully investigated. In the effort to search for compounds with anti-melanin deposition activity from Myanmar natural resources, five plants were collected in Myanmar. Extracts of these collected five plants were tested for anti-melanin deposition activity against a mouse melanoma cell line (B16-F10) induced with ${\alpha}$-melanocyte-stimulating hormone (${\alpha}$-MSH) and 3-isobutyl-1-methylxanthine (IBMX), and their anti-melanin deposition activities were compared with the positive control, arbutin. Among the tested extracts, the CHCl3 extracts of the Premna serratifolia (syn: P. integrifolia) wood showed anti-melanin deposition activities with IC50 values of $81.3{\mu}g/mL$. Hence, this study aims to identify secondary metabolites with anti-melanin deposition activity from P. serratifolia wood of Myanmar. P. serratifolia belongs to the Verbenaceae family and is widely distributed in near western sea coast from South Asia to South East Asia, which include India, Malaysia, Vietnam, Cambodia, and Sri Lanka. People in Tanintharyi region located in the southern part of Myanmar utilize the P. serratifolia, Sperethusa crenulata, Naringi crenulata, and Limonia acidissima as Thanaka, traditional cosmetics in Myanmar. Thanaka is applied in the form of paste onto skins to make it smooth and clear, as well as to prevent wrinkles, skin aging, excessive facial oil, pimples, blackheads, and whiteheads. However, the chemical constituents responsible for their cosmetic properties are yet to be identified. Moreover, the chemical constituents of P. serratifolia was almost uncharacterized. Investigation of the P. serratifolia chemical constituents is thus an attractive endeavor to discover new anti-melanin deposition active compounds. The investigation of the chemical constituents of the active CHCl3 extract of P. serratifolia led to isolation of four new lignoids, premnan A (1), premnan B (2), taungtangyiol C (3), and 7,9-dihydroxydolichanthin B (4), together with premnan C (5) (assumed to be an artifact), one natural newlignoid,(3R,4S)-4-(1,3-benzodioxol-5-ylcarbonyl)-3-[(R)-1-(1,3-benzo dioxol-5-yl)-1-hydroxy methyl]tetrahydro-2-furanone (6), and five known compounds (7-11)1,2). The structures of all isolated compounds were determined on the basis of their spectroscopic data and by comparison with the reported literatures. The absolute configurations of 1-3 and 5 were also determined by optical rotation and circular dichroism (CD) data analyses1). The anti-melanin deposition activities of all the isolated compounds were evaluated against B16-F10 cell line. 7,9-Dihydroxydolichanthin B (4) and ($2{\alpha},3{\alpha}$)-olean-12-en-28-oic acid (11) showed strong anti-melanin deposition activities with IC50 values of 18.4 and $11.2{\mu}M$, respectively, without cytotoxicity2). On the other hand, compounds 1-3, 5, and 7 showed melanogenesis enhancing activities1). To better understand their anti-melanin deposition mechanism, the effects of 4 and 11 on tyrosinase activities were investigated. The assay indicated that compounds 4 and 11 did not inhibit tyrosinase. Furthermore, we also examined the mRNA expression of microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2). Compounds 4 and 11 down-regulated the expression of Tyr and Mitf mRNAs, respectively. Although the P. serratifolia wood has been used as traditional cosmetics in Myanmar for centuries, there are no scientific evidences to support its effectiveness as cosmetics. Investigation of the anti-melanin deposition activity of the chemical constituents of P. serratifolia thus provided insight into the effectiveness of the P. serratifolia wood as a cosmetic agent.

  • PDF