Browse > Article
http://dx.doi.org/10.5656/KSAE.2016.07.0.034

Influence of Reactive Oxygen Species Produced by Chlorine Dioxide on Induction of Insect Cell Apoptosis  

Kim, Minhyun (Department of Bioresource Sciences, Andong National University)
Kumar, Sunil (Department of Bioresource Sciences, Andong National University)
Kwon, Hyeok (Department of Biosystems and Biotechnology, Korea University)
Kim, Wook (Department of Biosystems and Biotechnology, Korea University)
Kim, Yonggyun (Department of Bioresource Sciences, Andong National University)
Publication Information
Korean journal of applied entomology / v.55, no.3, 2016 , pp. 267-275 More about this Journal
Abstract
Chlorine dioxide has an insecticidal activity via its production of reactive oxygen species (ROS). Its cytotoxic activity has been regarded as a main cause of the insecticidal activity. This study tested a hypothesis that cytotoxicity of chlorine dioxide is resulted from its induction of apoptosis against target cells using ROS. Injection of chlorine dioxide significantly reduced total hemocyte counts of Plodia interpunctella larvae and subsequently killed the larvae. To analyze the cytotoxicity with respect to apoptosis, terminal deoxyribonucleotidyl transferase nick end translation (TUNEL) assay was performed. An insect cell line (Sf9) cells were exposed to different concentrations of chlorine dioxide. TUNEL assay showed that chlorine dioxide induced significant apoptosis of Sf9 cells in a dose-dependent manner. When different concentrations of chlorine dioxide were injected to larvae of P. interpunctella, it showed a dose-dependent induction of apoptosis against hemocytes. However, addition of vitamin E significantly suppressed the apoptosis induction and insecticidal activity of chlorine dioxide in a dose-dependent manner. These results suggest that cytotoxicity of chlorine dioxide is resulted from its induction of apoptosis against insect cells using ROS.
Keywords
Chlorine dioxide; Apoptosis; Reactive oxygen species; Insecticidal activity; Plodia interpunctella;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Arur, S., Uche, U.E., Rezaul, K., Fong, M., Scranton, V., Cowan, A.E., Mohler, W., Han, D.K., 2003. Annexin I is an endogenous ligand that mediates apoptotic cell engulfment. Dev. Cell. 4, 587-598.   DOI
2 Ashkenazi, A., Dixit, V.M., 1998. Death receptors: signaling and modulation. Science 281, 1305-1308.   DOI
3 Bortner, C.D., Oldenburg, N.B., Cidlowski, J.A., 1995. The role of DNA fragmentation in apoptosis. Trends Cell Biol. 5, 21-26.   DOI
4 Bratton, D.L., Fadok, V.A., Richter, D.A., Kailey, J.M., Guthrie, L.A., Henson, P.M., 1997. Appearance of phosphatidylserine on apoptotic cells requires calcium-mediated nonspecific flip-flop and is enhanced by loss of the aminophospholipid translocase. J. Biol. Chem. 272, 26159-26165.   DOI
5 Cai, J., Jones, D.P., 1998. Superoxide in apoptosis: mitochondrial generation triggered by cytochrome c loss. J. Biol. Chem. 273, 11401-11404.   DOI
6 Chicheportiche, Y., Bourdon, P.R., Xu, H., Hsu, Y.M., Scott, H., Hession, C., Garcia, I., Browning, J.L., 1997. TWEAK, a new secreted ligand in the tumor necrosis factor family that weakly induces apoptosis. J. Biol. Chem. 272, 32401-32410.   DOI
7 Chinnaiyan, A.M., 1999. The apoptosome: heart and soul of the cell death machine. Neoplasia 1, 5-15.   DOI
8 Cohen, G.M., 1997. Caspases: the executioners of apoptosis. Biochem. J. 326, 1-16.   DOI
9 Cory, S., Adams, J.M., 2002. The Bcl2 family: regulators of the cellular life-or-death switch. Nat. Rev. Cancer 2, 647-656.   DOI
10 Don, G., 1998. The chlorine dioxide handbook. Am. Water Works Assoc. 3-4.
11 Du, C., Fang, M., Li, Y., Li, L., Wang, X., 2000. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33-42.   DOI
12 Elmore, S., 2007. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495-516.   DOI
13 Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A., Nagata, S., 1998. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43-50.   DOI
14 Gavrieli, Y., Sherman, Y., Ben-Sasson, S.A., 1992. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119, 493-501.   DOI
15 Gardai, S.J., McPhillips, K.A., Frasch, S.C., Janssen, W.J., Starefeldt, A., Murphy-Ullrich, J.E., Bratton, D.L., Oldenborg, P.A., Michalak, M., Henson, P.M., 2005. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123, 321-334.   DOI
16 Garrido, C., Galluzzi, L., Brunet, M., Puig, P.E., Didelot, C., Kroemer, G., 2006. Mechanisms of cytochrome c release from mitochondria. Cell Death Differ. 13, 1423-1433.   DOI
17 Gibbs, S.G., Lowe, J.J., Smith, P.W., Hewlett, A.L., 2012. Gaseous chlorine dioxide as an alternative for bedbug control. Infect. Control Hosp. Epidemiol. 33, 495-499.   DOI
18 Herrera, E., Barbas, C., 2001. Vitamin E: action, metabolism and perspectives. J. Physiol. Biochem. 57, 43-56.   DOI
19 Hill, M.M., Adrain, C., Duriez, P.J., Creagh, E.M., Martin, S.J., 2004. Analysis of the composition, assembly kinetics and activity of native Apaf-1 apoptosomes. Embo J. 23, 2134-2145.   DOI
20 Hinenoya, A., Awasthi, S.P., Yasuda, N., Shima, A., Morino, H., Koizumi, T., Fukuda, T., Miura, T., Shibata, T., Yamasaki, S., 2015. Chlorine dioxide is a better disinfectant than sodium hypochlorite against multi-drug resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii. Jpn. J. Infect Dis. 68, 276-279   DOI
21 Hsu, H., Xiong, J., Goeddel, D.V., 1995. The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell 81, 495-504.   DOI
22 Joza, N., Susin, S.A., Daugas, E., Stanford, W.L., Cho, S.K., Li, C.Y., Sasaki, T., Elia, A.J., Cheng, H.Y., Ravagnan, L., Ferri, K.F., Zamzami, N., Wakeham, A., Hakem, R., Yoshida, H., Kong, Y.Y., Mak, T.W., Zuniga-Pflucker, J.C., Kroemer, G., Penninger, J.M., 2001. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410, 549-554.   DOI
23 Kataoka, T., Schroter, M., Hahne, M., Schneider, P., Irmler, M., Thome, M., Froelich, C.J. Tschopp, J., 1998. FLIP prevents apoptosis induced by death receptors but not by perforin/granzyme B, chemotherapeutic drugs, and gamma irradiation. J. Immunol. 161, 3936-3942.
24 Kim, Y., Kumar, S., Cheon, W., Eo, H., Kwon, H., Jeon, Y., Jung, J., Kim, W., 2016. Anticancer and antiviral activity of chlorine dioxide by its induction of the reactive oxygen species. J. Appl. Biol. Chem. 59, 31-36.   DOI
25 Kim, Y., Park, J., Kumar, S., Kwon, H., Na, J., Chun, Y., Kim, W., 2015. Insecticidal activity of chlorine dioxide gas by inducing an oxidative stress to the red flour beetle, Tribolium castaneum. J. Stored Prod. Res. 64, 88-96.   DOI
26 Kischkel, F.C., Hellbardt, S., Behrmann, I., Germer, M., Pawlita, M., Krammer, P.H., Peter, M.E., 1995. Cytotoxicity-dependent APO-1 (Fas/CD95)- associated proteins form a death-inducing signaling complex (DISC) with the receptor. Embo J. 14, 5579-5588.
27 Locksley, R.M., Killeen, N., Lenardo, M.J., 2001. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, 487-501.   DOI
28 Kothakota, S., Azuma, T., Reinhard, C., Klippel, A., Tang, J., Chu, K., McGarry, T.J., Kirschner, M.W., Koths, K., Kwiatkowski, D.J., Williams, L.T., 1997. Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278, 294-298.   DOI
29 Kumar, S., Park, J., Kim, E., Na, J., Chun, Y.S., Kwon, H., Kim, W., Kim, Y., 2015. Oxidative stress induced by chlorine dioxide as an insecticidal factor to the Indian meal moth, Plodia interpunctella. Pestic. Biochem. Physiol. 124, 48-59.   DOI
30 Li, L.Y., Luo, X., Wang, X., 2001. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412, 95-99.   DOI
31 Mates, J.M., Sanchez-Jimenez, F.M., 2000. Role of reactive oxygen species in apoptosis: implications for cancer therapy. Int. J. Biochem. Cell Biol. 32, 157-170.   DOI
32 Nemes, Z., Jr., Friis, R.R., Aeschlimann, D., Saurer, S., Paulsson, M., Fesus, L., 1996. Expression and activation of tissue transglutaminase in apoptotic cells of involuting rodent mammary tissue. Eur. J. Cell Biol. 70, 125-133.
33 Norbury, C.J., Hickson, I.D., 2001. Cellular responses to DNA damage. Annu. Rev. Pharmacol. Toxicol. 41, 367-401.   DOI
34 Peter, M.E., Krammer, P.H., 1998. Mechanisms of CD95 (APO-1/Fas)-mediated apoptosis. Curr. Opin. Immunol. 10, 545-551.   DOI
35 Rai, N.K., Tripathi, K., Sharma, D., Shukla, V.K., 2005. Apoptosis: a basic physiologic process in wound healing. Int. J. Low Extrem. Wounds 4, 138-144.   DOI
36 SAS Institute, Inc., 1989. SAS/STAT user's guide. SAS Institute, Inc., Cary, NC.
37 Rubio-Moscardo, F., Blesa, D., Mestre, C., Siebert, R., Balasas, T., Benito, A., Rosenwald, A., Climent, J., Martinez, J.I., Schilhabel, M., Karran, E.L., Gesk, S., Esteller, M., deLeeuw, R., Staudt, L.M., Fernandez-Luna, J.L., Pinkel, D., Dyer, M.J., Martinez-Climent, J.A., 2005. Characterization of 8p21.3 chromosomal deletions in B-cell lymphoma: TRAIL-R1 and TRAIL-R2 as candidate dosage-dependent tumor suppressor genes. Blood 106, 3214-3222.   DOI
38 Saelens, X., Festjens, N., Vande Walle, L., van Gurp, M., van Loo, G., Vandenabeele, P., 2004. Toxic proteins released from mitochondria in cell death. Oncogene 23, 2861-2874.   DOI
39 Sakahira, H., Enari, M., Nagata, S., 1998. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391, 96-99.   DOI
40 Scaffidi, C., Schmitz, I., Krammer, P.H., Peter, M.E., 1999. The role of c-FLIP in modulation of CD95-induced apoptosis. J. Biol. Chem. 274, 1541-1548.   DOI
41 Schimmer, A.D., 2004. Inhibitor of apoptosis proteins: translating basic knowledge into clinical practice. Cancer Res. 64, 7183-7190.   DOI
42 Slee, E.A., Adrain, C., Martin, S.J., 2001. Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J. Biol. Chem. 276, 7320-7326.   DOI
43 Suliman, A., Lam, A., Datta, R., Srivastava, R.K., 2001. Intracellular mechanisms of TRAIL: apoptosis through mitochondrial-dependent and -independent pathways. Oncogene 20, 2122-2133.   DOI
44 Zeiss, C.J., 2003. The apoptosis-necrosis continuum: insights from genetically altered mice. Vet. Pathol. 40, 481-495.   DOI
45 van Loo, G., van Gurp, M., Depuydt, B., Srinivasula, S.M,, Rodriguez, I., Alnemri, E.S., Gevaert, K., Vandekerckhove, J., Declercq, W., Vandenabeele, P., 2002. The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death Differ. 9, 20-26.   DOI
46 Volk, C.J., Hofmann, R., Chauret, C., Gagnom, G.A., Ranger, G., Andrews, R.C., 2002. Implementation of chlorine dioxide disinfection: effects of the treatment change on drinking water quality in a full-scale distribution system. J. Environ. Eng. Sci. 1, 323-330.   DOI
47 Wajant, H., 2002. The Fas signaling pathway: more than a paradigm. Science 296, 1635-1636.   DOI