• Title/Summary/Keyword: Cell Disruption

Search Result 313, Processing Time 0.02 seconds

Disruption of the metC Gene Affects Methionine Biosynthesis in Pectobacterium carotovorum subsp. carotovorum Pcc21 and Reduces Soft-Rot Disease

  • Seonmi, Yu;Jihee, Kang;Eui-Hwan, Chung;Yunho, Lee
    • The Plant Pathology Journal
    • /
    • v.39 no.1
    • /
    • pp.62-74
    • /
    • 2023
  • Plant pathogenic Pectobacterium species cause severe soft rot/blackleg diseases in many economically important crops worldwide. Pectobacterium utilizes plant cell wall degrading enzymes (PCWDEs) as the main virulence determinants for its pathogenicity. In this study, we screened a random mutant, M29 is a transposon insertion mutation in the metC gene encoding cystathionine β-lyase that catalyzes cystathionine to homocysteine at the penultimate step in methionine biosynthesis. M29 became a methionine auxotroph and resulted in growth defects in methionine-limited conditions. Impaired growth was restored with exogenous methionine or homocysteine rather than cystathionine. The mutant exhibited reduced soft rot symptoms in Chinese cabbages and potato tubers, maintaining activities of PCWDEs and swimming motility. The mutant was unable to proliferate in both Chinese cabbages and potato tubers. The reduced virulence was partially restored by a complemented strain or 100 µM of methionine, whereas it was fully restored by the extremely high concentration (1 mM). Our transcriptomic analysis showed that genes involved in methionine biosynthesis or transporter were downregulated in the mutant. Our results demonstrate that MetC is important for methionine biosynthesis and transporter and influences its virulence through Pcc21 multiplication in plant hosts.

Total polyphenol and ferulic acid analysis of a new variety of corn, Bandiburichodang, according to steaming time and roasting temperature

  • Nari Yoon;Hak-Dong Lee;Uyoung Na;A Ram Yu;Min-Jung Bae;Gunhwa Park;Sanghyun Lee
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.305-310
    • /
    • 2023
  • Bandiburichodang (BDC) is a new variety of Zea mays L. Total polyphenol content (TPC) assay and quantitative analysis of ferulic acid (FA) were performed to determine the steaming, roasting conditions of BDC kernels that lead to the highest content. TPC levels increased after roasting under all conditions. TPC levels in samples steamed at 115 ℃ for 25 min were 3.157 mg/g before roasted, and increased to 3.825 and 4.739 mg/g after roasting at 160 and 200 ℃, respectively. Whether BDC kernels were roasted was relevant with TPC content. BDC kernels were extracted to perform quantitative analysis of FA. Roasting temperature affected FA content: the higher the temperature, the lower the content. BDC kernels that were steamed at 115 ℃ for 25 min had 0.178 mg/g of FA content before roasting, and levels decreased to 0.132 and 0.115 mg/g after roasting. Under different roasting conditions, FA content decreased 15 to 50%. We hypothesize that this phenomenon is due to a breakdown of phenolic compounds or cell wall disruption.

Mitochondrially Targeted Bcl-2 and Bcl-XL Chimeras Elicit Different Apoptotic Responses

  • Liu, Sen;Pereira, Natasha Ann;Teo, Joong Jiat;Miller, Peter;Shah, Priya;Song, Zhiwei
    • Molecules and Cells
    • /
    • v.24 no.3
    • /
    • pp.378-387
    • /
    • 2007
  • The Bcl-2 family of proteins interacts at the mitochondria to regulate apoptosis. However, the anti-apoptotic Bcl-2 and $Bcl-X_L$ are not completely localized to the mitochondria. In an attempt to generate Bcl-2 and $Bcl-X_L$ chimeras that are constitutively localized to the mitochondria, we substituted their C-terminal transmembrane tail or both the C-terminal transmembrane tail and the adjacent loop with the equivalent regions from Bak or Bax mutant (BaxS184V) as these regions determine the mitochondrial localization of Bak and Bax. The effects of these substitutions on subcellular localization and their activities were assessed following expression in HeLa and CHO K1 cells. The substitution of the C-terminal tail or the C-terminal tail and the adjacent loop of Bcl-2 with the equivalent regions from Bak or the Bax mutant resulted in its association with the mitochondria. This change in subcellular localization of Bcl-2 chimeras triggered cells to undergo apoptotic-like cell death. The localization of this Bcl-2 chimera to the mitochondria may be associated with the disruption of mitochondrial membrane potential. Unlike Bcl-2, the loop structure adjacent to the C-terminal tail in $Bcl-X_L$ is crucial for its localization. To localize the $Bcl-X_L$ chimeras to the mitochondria, the loop structure next to the C-terminal tail in $Bcl-X_L$ protein must remain intact and cannot be substituted by the loop from Bax or Bak. The chimeric $Bcl-X_L$ with both its C-terminal tail and the loop structure replaced by the equivalent regions of Bak or Bax mutant localized throughout the entire cytosol. The $Bcl-X_L$ chimeras that are targeted to the mitochondria and the wild type $Bcl-X_L$ provided same protection against cell death under several death inducing conditions.

Global knockdown of microRNAs affects the expression of growth factors and cytokines in human adipose-derived mesenchymal stem cells

  • Park, Seul-Ki;Lee, Jung Shin;Choi, Eun Kyung;You, Dalsan;Kim, Choung-Soo;Suh, Nayoung
    • BMB Reports
    • /
    • v.47 no.8
    • /
    • pp.469-474
    • /
    • 2014
  • Cell therapies utilizing mesenchymal stem cells (MSCs) have a great potential in many research and clinical settings. The mechanisms underlying the therapeutic effects of MSCs have been studied previously and the paracrine effects elicited by their production of various growth factors and cytokines were recognized as being crucial. However, the molecular controls that govern these paracrine effects remain poorly understood. To elucidate the molecular regulators of this process, we performed a global knockdown of microRNAs (miRNAs) in human adipose-derived mesenchymal stem cells (hADSCs) by inhibiting DGCR8, a key protein in miRNA biogenesis. Global disruption of miRNA biogenesis in hADSCs caused dramatic changes in the expression of subsets of growth factors and cytokines. By performing an extensive bioinformatic analysis, we were able to associate numerous putative miRNAs with these genes. Taken together, our results strongly suggest that miRNAs are essential for the production of growth factors and cytokines in hADSCs.

The Effects of Hyunggaeyungyo-tang of Suppression of iNOS Production on Mice with Allergic Rhinitis (알레르기 비염 유발 생쥐에 대한 형개연교탕(荊芥連翹湯)의 iNOS 생성 억제 효과)

  • Park, Jung-Hoon;Hong, Seung-Ug
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.25 no.1
    • /
    • pp.12-21
    • /
    • 2012
  • Background and Objectives : Allergic rhinitis is one of the most common diseases in the otorhinolaryngology area. in oriental clinic, Hyunggaeyungyo-tang(HYT) has been used as a primary prescription to treat allergic rhinitis. However, there have been no studies so far performed on the effect of this HYT use. The purpose of this study was find out therapeutic effects of its exclusive use on the rat with allergic rhinitis. Material and Methods : Thirty BALB/c mice were divided into three group : normal group(NOR), control group(CON) inoculated with allergic rhinitis and sample group(SAM) treated with the HYT extract after it was treated the same as the control group. Rats were sensitized intraperitoneally with ovalbumin solution 4times at intervals of 2 days. After that time, rats in SAM were administered by HYT to treat the inflammation. Results : 1. The number of eosinophil in SAM noticeably decreased than CON and this decrease had probability. The inhibition of eosinophil distribution. The infiltration of eosinophil in SAM noticeably decreased than CON. 2. The damaged mucosa as disruption of cilia in respiratory cell, vacant mucose secreting cell and infiltration of inflammation intricate cells in CON were increased than NOR, but SAM same as normal configuration. Decrease of icthing and sneezing intricate neurotransmitter (substance P). Decrease of angiogenesis intricate cytokine(MIP-2). 3. Transcription factor(NF-${\kappa}B$ p65) was decreased. 4. Transcription factor inhibitor(p-$I{\kappa}B$) was decreased. 5. Inflammation cytokine(iNOS) was decreased. Conclusion : The results suggest that HYT is significantly effective in the treatment of inflammation caused by allergic rhinitis through the suppression of NF-${\kappa}B$ activation and iNOS production.

Bacillus subtilis Protects Porcine Intestinal Barrier from Deoxynivalenol via Improved Zonula Occludens-1 Expression

  • Gu, Min Jeong;Song, Sun Kwang;Park, Sung Moo;Lee, In Kyu;Yun, Cheol-Heui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.4
    • /
    • pp.580-586
    • /
    • 2014
  • Intestinal epithelial cells (IECs) forming the barrier for the first-line of protection are interconnected by tight junction (TJ) proteins. TJ alteration results in impaired barrier function, which causes potentially excessive inflammation leading to intestinal disorders. It has been suggested that toll-like receptor (TLR) 2 ligands and some bacteria enhance epithelial barrier function in humans and mice. However, no such study has yet to be claimed in swine. The aim of the present study was to examine whether Bacillus subtilis could improve barrier integrity and protection against deoxynivalenol (DON)-induced barrier disruption in porcine intestinal epithelial cell line (IPEC-J2). We found that B. subtilis decreased permeability of TJ and improved the expression of zonula occludens (ZO)-1 and occludin during the process of forming TJ. In addition, ZO-1 expression of IPEC-J2 cells treated with B. subtilis was up-regulated against DON-induced damage. In conclusion, B. subtilis may have potential to enhance epithelial barrier function and to prevent the cells from DON-induced barrier dysfunction.

In Vitro Antifungal Activity of (1)-N-2-Methoxybenzyl-1,10-phenanthrolinium Bromide against Candida albicans and Its Effects on Membrane Integrity

  • Setiawati, Setiawati;Nuryastuti, Titik;Ngatidjan, Ngatidjan;Mustofa, Mustofa;Jumina, Jumina;Fitriastuti, Dhina
    • Mycobiology
    • /
    • v.45 no.1
    • /
    • pp.25-30
    • /
    • 2017
  • Metal-based drugs, such as 1,10-phenanthroline, have demonstrated anticancer, antifungal and antiplasmodium activities. One of the 1,10-phenanthroline derivatives compounds (1)-N-2-methoxybenzyl-1,10-phenanthrolinium bromide (FEN), which has been demonstrated an inhibitory effect on the growth of Candida spp. This study aimed to explore the in vitro antifungal activity of FEN and its effect on the membrane integrity of Candida albicans. The minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) of FEN against planktonic C. albicans cells were determined using the broth microdilution method according to the Clinical and Laboratory Standards Institute guidelines. Cell membrane integrity was determined with the propidium iodide assay using a flow cytometer and were visualized using scanning electron microscopy (SEM). Planktonic cells growth of C. albicans were inhibited by FEN, with an MIC of $0.39-1.56{\mu}g/mL$ and a MFC that ranged from 3.125 to $100{\mu}g/mL$. When C. albicans was exposed to FEN, the uptake of propidium iodide was increased, which indicated that membrane disruption is the probable mode of action of this compound. There was cells surface changes of C. albicans when observed under SEM.

The Polyphenol Chlorogenic Acid Attenuates UVB-mediated Oxidative Stress in Human HaCaT Keratinocytes

  • Cha, Ji Won;Piao, Mei Jing;Kim, Ki Cheon;Yao, Cheng Wen;Zheng, Jian;Kim, Seong Min;Hyun, Chang Lim;Ahn, Yong Seok;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.22 no.2
    • /
    • pp.136-142
    • /
    • 2014
  • We investigated the protective effects of chlorogenic acid (CGA), a polyphenol compound, on oxidative damage induced by UVB exposure on human HaCaT cells. In a cell-free system, CGA scavenged 1,1-diphenyl-2-picrylhydrazyl radicals, superoxide anions, hydroxyl radicals, and intracellular reactive oxygen species (ROS) generated by hydrogen peroxide and ultraviolet B (UVB). Furthermore, CGA absorbed electromagnetic radiation in the UVB range (280-320 nm). UVB exposure resulted in damage to cellular DNA, as demonstrated in a comet assay; pre-treatment of cells with CGA prior to UVB irradiation prevented DNA damage and increased cell viability. Furthermore, CGA pre-treatment prevented or ameliorated apoptosis-related changes in UVB-exposed cells, including the formation of apoptotic bodies, disruption of mitochondrial membrane potential, and alterations in the levels of the apoptosis-related proteins Bcl-2, Bax, and caspase-3. Our findings suggest that CGA protects cells from oxidative stress induced by UVB radiation.

Anti-Proliferative Activities of Vasicinone on Lung Carcinoma Cells Mediated via Activation of Both Mitochondria-Dependent and Independent Pathways

  • Dey, Tapan;Dutta, Prachurjya;Manna, Prasenjit;Kalita, Jatin;Boruah, Hari Prasanna Deka;Buragohain, Alak Kumar;Unni, Balagopalan
    • Biomolecules & Therapeutics
    • /
    • v.26 no.4
    • /
    • pp.409-416
    • /
    • 2018
  • Vasicinone, a quinazoline alkaloid from Adhatoda vasica Nees. is well known for its bronchodilator activity. However its anti-proliferative activities is yet to be elucidated. Here-in we investigated the anti-proliferative effect of vasicinone and its underlying mechanism against A549 lung carcinoma cells. The A549 cells upon treatment with various doses of vasicinone (10, 30, 50, $70{\mu}M$) for 72 h showed significant decrease in cell viability. Vasicinone treatment also showed DNA fragmentation, LDH leakage, and disruption of mitochondrial potential, and lower wound healing ability in A549 cells. The Annexin V/PI staining showed disrupted plasma membrane integrity and permeability of PI in treated cells. Moreover vasicinone treatment also lead to down regulation of Bcl-2, Fas death receptor and up regulation of PARP, BAD and cytochrome c, suggesting the anti-proliferative nature of vasicinone which mediated apoptosis through both Fas death receptors as well as Bcl-2 regulated signaling. Furthermore, our preliminary studies with vasicinone treatment also showed to lower the ROS levels in A549 cells and have potential free radical scavenging (DPPH, Hydroxyl) activity and ferric reducing power in cell free systems. Thus combining all, vasicinone may be used to develop a new therapeutic agent against oxidative stress induced lung cancer.

Efficiency and Midgut Histopathological Effect of the Newly Isolated Bacillus thuringiensis KS ${\delta}$-Endotoxins on the Emergent Pest Tuta absoluta

  • Jamoussi, Kais;Sellami, Sameh;Nasfi, Zina;Krichen-Makni, Saloua;Tounsi, Slim
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.8
    • /
    • pp.1099-1106
    • /
    • 2013
  • Tuta absoluta (Povolny, 1994) is a devastating moth to the Solanaceae plants. It is a challenging pest to control, especially on tomatoes. In this work, we studied the entomopathogenic activity of the Cry-forming ${\delta}$-endotoxins produced by Bacillus thuringiensis strain KS and B. thuringiensis kurstaki reference strain HD1 against T. absoluta. These strains carried the cry2, cry1Ab, cry1Aa/cry1Ac, and cry1I genes, and KS also carried a cry1C gene. The ${\delta}$-endotoxins of KS were approximately twofold more toxic against the third instar larvae than those of HD1, as they showed lower 50% and 90% lethal concentrations (0.80 and 2.70 ${\mu}g/cm^2$ (${\delta}$-endotoxins/tomato leaf)) compared with those of HD1 (1.70 and 4.50 ${\mu}g/cm^2$) (p < 0.05). Additionally, the larvae protease extract showed at least six caseinolytic activities, which activated the KS and HD1 ${\delta}$-endotoxins, yielding the active toxins of about 65 kDa and the protease-resistant core of about 58 kDa. Moreover, the histopathological effects of KS and HD1 ${\delta}$-endotoxins on the larvae midgut consisted of an apical columnar cell vacuolization, microvillus damage, and epithelial cell disruption. These results showed that the KS strain could be a candidate for T. absoluta control.