Mitochondrially Targeted Bcl-2 and Bcl-XL Chimeras Elicit Different Apoptotic Responses |
Liu, Sen
(Bioprocessing Technology Institute)
Pereira, Natasha Ann (Bioprocessing Technology Institute) Teo, Joong Jiat (Bioprocessing Technology Institute) Miller, Peter (Bioprocessing Technology Institute) Shah, Priya (Bioprocessing Technology Institute) Song, Zhiwei (Bioprocessing Technology Institute) |
1 | Griffiths, G. J., Dubrez, L., Morgan, C. P., Jones, N. A., Whitehouse, J., et al. (1999) Cell damage-induced conformational changes of the pro-apoptotic protein Bak in vivo precede the onset of apoptosis. J. Cell Biol. 144, 903−914 |
2 | Hsu, Y. T., Wolter, K. G., and Youle, R. J. (1997) Cytosol-tomembrane redistribution of Bax and Bcl-X(L) during apoptosis. Proc. Natl. Acad. Sci. USA 94, 3668−3672 |
3 | Jeong, S. Y., Gaume, B., Lee, Y. J., Hsu, Y. T., Ryu, S. W., et al. (2004) Bcl-x(L) sequesters its C-terminal membrane anchor in soluble, cytosolic homodimers. EMBO J. 23, 2146−2155 |
4 | Kaufmann, T., Schlipf, S., Sanz, J., Neubert, K., Stein, R., et al. (2003) Characterization of the signal that directs Bcl-x(L), but not Bcl-2, to the mitochondrial outer membrane. J. Cell Biol. 160, 53−64 |
5 | Marsden, V. S. and Strasser, A. (2003) Control of apoptosis in the immune system: Bcl-2, BH3-Only proteins and more. Annu. Rev. Immunol. 21, 71−105 |
6 | Suzuki, M., Youle, R. J., and Tjandra, N. (2000) Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103, 645−654 |
7 | Warrens, A. N., Jones, M. D., and Lechler, R. I. (1997) Splicing by overlap extension by PCR using asymmetric amplification: an improved technique for the generation of hybrid proteins of immunological interest. Gene 186, 29−35 |
8 | Wolter, K. G., Hsu, Y. T., Smith, C. L., Nechushtan, A., Xi, X. G., et al. (1997) Movement of Bax from the cytosol to mitochondria during apoptosis. J. Cell Biol. 139, 1281−1292 |
9 | Aokage, T., Ohsawa, I., and Ohta, S. (2004) Green fluorescent protein causes mitochondria to aggregate in the presence of the Bcl-2 family proteins. Biochem. Biophys. Res. Commun. 314, 711−716 |
10 | Schinzel, A., Kaufmann, T., and Borner, C. (2004) Bcl-2 family members: intracellular targeting, membrane-insertion, and changes in subcellular localization. Biochim. Biophys. Acta 1644, 95−105 |
11 | Vives, J., Juanola, S., Cairo, J. J., and Godia, F. (2003) Metabolic engineering of apoptosis in cultured animal cells: implications for the biotechnology industry. Metab. Eng. 5, 124− 132 |
12 | Cory, S., Huang, D. C., and Adams, J. M. (2003) The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22, 8590−8607 |
13 | Arden, N. and Betenbaugh, M. J. (2004) Life and death in mammalian cell culture: strategies for apoptosis inhibition. Trends Biotechnol. 22, 174−180 |
14 | Gross, A., Jockel, J., Wei, M. C., and Korsmeyer, S. J. (1998) Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J. 17, 3878− 3885 |
15 | Gross, A., McDonnell, J. M., and Korsmeyer, S. J. (1999) BCL- 2 family members and the mitochondria in apoptosis. Genes Dev. 13, 1899−1911 |
16 | Chuan, K. H., Lim, S. F., Martin, L., Yun, C. Y., Lasne, F., et al. (2006) Caspase activation, sialidase release and changes in sialylation patterns of recombinant human erythropoietin produced by CHO cells in batch and fed batch cultures. Cytotechnology 51, 67−79 |
17 | Shinoura, N., Yoshida, Y., Nishimura, M., Muramatsu, Y., Asai, A., et al. (1999) Expression level of Bcl-2 determines anti- or pro-apoptotic function. Cancer Res. 59, 4119−4128 |
18 | Wang, N. S., Unkila, M. T., Reineks, E. Z., and Distelhorst, C. W. (2001) Transient expression of wild-type or mitochondrially targeted Bcl-2 induces apoptosis, whereas transient expression of endoplasmic reticulum-targeted Bcl-2 is protective against Bax-induced cell death. J. Biol. Chem. 276, 44117− 44128 |
19 | Wang, X. (2001) The expanding role of mitochondria in apoptosis. Genes Dev. 15, 2922−2933 |
20 | Thomenius, M. J. and Distelhorst, C. W. (2003) Bcl-2 on the endoplasmic reticulum: protecting the mitochondria from a distance. J. Cell Sci. 116, 4493−4499 |
21 | Cheng, E. H., Kirsch, D. G., Clem, R. J., Ravi, R., Kastan, M. B., et al. (1997) Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 278, 1966−1968 |
22 | Esposti, M. D. and Dive, C. (2003) Mitochondrial membrane permeabilisation by Bax/Bak. Biochem. Biophys. Res. Commun. 304, 455−461 |
23 | Ruffolo, S. C. and Shore, G. C. (2003) BCL-2 selectively interacts with the BID-induced open conformer of BAK, inhibiting BAK auto-oligomerization. J. Biol. Chem. 278, 25039− 25045 |
24 | Sattler, M., Liang, H., Nettesheim, D., et al. (1997) Structure of Bcl-XL-Bak peptide complex: recognition between regulators of apoptosis. Science 275, 983−986 |
25 | Nechushtan, A., Smith, C. L., Hsu, Y. T., and Youle, R. J. (1999) Conformation of the Bax C-terminus regulates subcellular location and cell death. EMBO J. 18, 2330−2341 |
26 | Kuwana, T., Bouchier-Hayes, L., Chipuk, J. E., Bonzon, C., Sullivan, B. A., et al. (2005) BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol. Cell 17, 525−535 |