• Title/Summary/Keyword: Cell Coverage

Search Result 281, Processing Time 0.029 seconds

Dosimetric Analysis of Lung Stereotactic Body Radiotherapy Using Halcyon Linear Accelerator

  • Shinhaeng Cho;Ick Joon Cho;Yong Hyub Kim;Jea-Uk Jeong;Mee Sun Yoon;Taek-Keun Nam;Sung-Ja Ahn;Ju-Young Song
    • Progress in Medical Physics
    • /
    • v.34 no.4
    • /
    • pp.48-54
    • /
    • 2023
  • Purpose: In this study, the dosimetric characteristics of lung stereotactic body radiotherapy (SBRT) plans using the new Halcyon system were analyzed to assess its suitability. Methods: We compared the key dosimetric parameters calculated for the Halcyon SBRT plans with those of a conventional C-arm linear accelerator (LINAC) equipped with a high-definition multileaf collimator (HD-MLC)-Trilogy Tx. A total of 10 patients with non-small-cell lung cancer were selected, and all SBRT plans were generated using the RapidArc technique. Results: Trilogy Tx exhibited significant superiority over Halcyon in terms of target dose coverage (conformity index, homogeneity index, D0.1 cc, and D95%) and dose spillage (gradient). Trilogy Tx was more efficient than Halcyon in the lung SBRT beam delivery process in terms of the total number of monitor units, modulation factor, and beam-on time. However, it was feasible to achieve a dose distribution that met SBRT plan requirements using Halcyon, with no significant differences in satisfying organs at risk dose constraints between both plans. Conclusions: Results confirm that Halcyon is a viable alternative for performing lung SBRT in the absence of a LINAC equipped with HD-MLC. However, extra consideration should be taken in determining whether to use Halcyon when the planning target volume setting is enormous, as in the case of significant tumor motions.

Cluster Coordinator Node Based Inter-Cell Interference Management Methods in Heterogeneous Networks (이기종 네트워크에서 클러스터 코디네이터 노드 기반의 셀간 간섭 관리 방법)

  • Yang, Mochan;Wu, Shanai;Shin, Oh-Soon;Shin, Yoan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.3
    • /
    • pp.277-288
    • /
    • 2013
  • 3GPP LTE-Advanced (Third Generation Partnership Project Long Term Evolution-Advanced) as a next generation mobile communication standard introduced small base stations such as femto cells or pico cells, and D2D (Device-to-Device) communications between mobiles in the proximity in order to satisfy the needs of rapidly growing wireless data traffic. A diverse range of topics has been studied to solve various interference situations which may occur within a single cell. In particular, an introduction of a small base station along with D2D communication raises important issues of how to increase the channel capacity and frequency efficiency in HetNets (Heterogeneous Networks). To this end, we propose in this paper methods to manage the interference between the macro cell and other small cells in the HetNet to improve the frequency efficiency. The proposed CCN (Cluster Coordinator Node)-assisted ICI (Inter-Cell Interference) avoidance methods exploit the CCN to control the interference in HetNet comprising of an MeNB (Macro enhanced Node-B) and a large number of small cells. A CCN which is located at the center of a number of small cells serves to avoid the interference between macro cell and small cells. We propose methods of resource allocation to avoid ICI for user equipments within the CCN coverage, and evaluate their performance through system-level computer simulations.

Optical Characteristics of Near-monolayer InAs Quantum Dots

  • Kim, Yeong-Ho;Kim, Seong-Jun;No, Sam-Gyu;Park, Dong-U;Kim, Jin-Su;Im, In-Sik;Kim, Jong-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.293-294
    • /
    • 2011
  • It is known that semiconductor quantum-dot (QD) heterostructures have superior zero-dimensional quantum confinement, and they have been successfully applied to semiconductor laser diodes (QDLDs) for optical communication and infrared photodetectors (QDIPs) for thermal images [1]. The self-assembled QDs are normally formed at Stranski-Krastanov (S-K) growth mode utilizing the accumulated strain due to lattice-mismatch existing at heterointerfaces between QDs and cap layers. In order to increase the areal density and the number of stacks of QDs, recently, sub-monolayer (SML)-thick QDs (SQDs) with reduced strain were tried by equivalent thicknesses thinner than a wetting layer (WL) existing in conventional QDs (CQDs) by S-K mode. Despite that it is very different from CQDs with a well-defined WL, the SQD structure has been successfully applied to QDIP[2]. In this study, optical characteristics are investigated by using photoluminescence (PL) spectra taken from self-assembled InAs/GaAs QDs whose coverage are changing from submonolayer to a few monolayers. The QD structures were grown by using molecular beam epitaxy (MBE) on semi-insulating GaAs (100) substrates, and formed at a substrate temperature of 480$^{\circ}C$ followed by covering GaAs cap layer at 590$^{\circ}C$. We prepared six 10-period-stacked QD samples with different InAs coverages and thicknesses of GaAs spacer layers. In the QD coverage below WL thickness (~1.7 ML), the majority of SQDs with no WL coexisted with a small amount of CQDs with a WL, and multi-peak spectra changed to a single peak profile. A transition from SQDs to CQDs was found before and after a WL formation, and the sublevel of SQDs peaking at (1.32${\pm}$0.1) eV was much closer to the GaAs bandedge than that of CQDs (~1.2 eV). These revealed that QDs with no WL could be formed by near-ML coverage in InAs/GaAs system, and single-mode SQDs could be achieved by 1.5 ML just below WL that a strain field was entirely uniform.

  • PDF

A New Test Algorithm for Bit-Line Sensitive Faults in High-Density Memories (고집적 메모리에서 BLSFs(Bit-Line Sensitive Faults)를 위한 새로운 테스트 알고리즘)

  • Kang, Dong-Chual;Cho, Sang-Bock
    • Journal of IKEEE
    • /
    • v.5 no.1 s.8
    • /
    • pp.43-51
    • /
    • 2001
  • As the density of memories increases, unwanted interference between cells and coupling noise between bit-lines are increased. And testing high-density memories for a high degree of fault coverage can require either a relatively large number of test vectors or a significant amount of additional test circuitry. So far, conventional test algorithms have focused on faults between neighborhood cells, not neighborhood bit-lines. In this paper, a new test algorithm for neighborhood bit-line sensitive faults (NBLSFs) based on the NPSFs(Neighborhood Pattern Sensitive Faults) is proposed. And the proposed algorithm does not require any additional circuit. Instead of the conventional five-cell or nine-cell physical neighborhood layouts to test memory cells, a three-cell layout which is minimum size for NBLSFs detection is used. Furthermore, to consider faults by maximum coupling noise by neighborhood bit-lines, we added refresh operation after write operation in the test procedure(i.e.,$write{\rightarrow}\;refresh{\rightarrow}\;read$). Also, we show that the proposed algorithm can detect stuck-at faults, transition faults, coupling faults, conventional pattern sensitive faults, and neighborhood bit-line sensitive faults.

  • PDF

Impact of Power Control Optimization on the System Performance of Relay Based LTE-Advanced Heterogeneous Networks

  • Bulakci, Omer;Redana, Simone;Raaf, Bernhard;Hamalainen, Jyri
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.345-359
    • /
    • 2011
  • Decode-and-forward relaying is a promising enhancement to existing radio access networks and is already standardized in 3rd generation partnership project (3GPP) as a part of long term evolution (LTE)-Advanced Release 10. Two inband operation modes of relay nodes are supported, namely type 1 and type lb. Relay nodes promise to offer considerable gain for system capacity or coverage, depending on the deployment prioritization, in a cost-efficient way. Yet, in order to fully exploit the benefits of relaying, the inter-cell interference which is increased due to the presence of relay nodes should be limited. Moreover, large differences in the received power levels from different users should be avoided. The goal is to keep the receiver dynamic range low in order to retain the orthogonality of the single carrier-frequency division multiple access system. In this paper, an evaluation of the relay based heterogeneous deployment within the LTE-Advanced uplink framework is carried out by applying the standardized LTE Release 8 power control scheme both at evolved node B and relay nodes. In order to enhance the overall system performance, different power control optimization strategies are proposed for 3GPP urban and suburban scenarios. A comparison between type 1 and type 1b relay nodes is as well presented to study the effect of the relaying overhead on the system performance in inband relay deployments. Comprehensive system level simulations show that the power control is a crucial means to increase the cell edge and system capacities, to mitigate inter-cell interference and to adjust the receiver dynamic range for both relay node types.

A Joint Allocation and Path Selection Scheme for Downlink Transmission in LTE-Advanced Relay System with Cooperative Relays (협력 통신을 이용한 LTE-Advanced 릴레이 시스템을 위한 하향링크 통합 자원할당 및 경로선택 기법)

  • Lee, Hyuk Joon;Um, Tae Hyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.6
    • /
    • pp.211-223
    • /
    • 2018
  • Mobile relay systems have been adopted by $4^{th}$ generation mobile systems as an alternative method to extend cell coverage as well as to enhance the system throughput at cell-edges. In order to achieve such performance gains, the mobile relay systems require path selection and resource allocation schemes that are specifically designed for these systems which make use of additional radio resources not needed in single-hop systems. This paper proposes an integrated path selection and resource allocation scheme for LTE-Advanced relay systems using collaborative communication. We first define the problem of maximizing the downlink throughput of LTE-Advanced relay systems using collaborative communication and transform it into a multi-dimensional multi-choice backpacking problem. The proposed Lagrange multiplier-based heuristic algorithm is then applied to derive the approximate solution to the maximization problem. It is shown through simulations that the approximate solution obtained by the proposed scheme can achieve a near-optimal performance.

A Study on Dynamic Channel Assignment to Increase Uplink Performance in Ultra Dense Networks (초고밀도 네트워크에서 상향링크 성능향상을 위한 유동적 채널할당 연구)

  • Kim, Se-Jin
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.25-31
    • /
    • 2022
  • In ultra dense networks (UDNs), macro user equipments (MUEs) have significant interference from small-cell access points (SAPs) since a number of SAPs are deployed in the coverage of macro base stations of 5G mobile communication systems. In this paper, we propose a dynamic channel assignment scheme to increase the performance of MUEs for the uplink of UDNs even though the number of SAPs is increased. The target of the proposed dynamic channel assignment scheme is that the signal-to-interference and noise ratio (SINR) of MUEs is above a given SINR threshold assigning different subchannels to SUEs from those of MUEs. Simulation results show that the proposed dynamic channel assignment scheme outperforms others in terms of the mean MUE capacity even though the mean SUE capacity is decreased a little lower.

Rapid Self-Configuration and Optimization of Mobile Communication Network Base Station using Artificial Intelligent and SON Technology (인공지능과 자율운용 기술을 이용한 긴급형 이동통신 기지국 자율설정 및 최적화)

  • Kim, Jaejeong;Lee, Heejun;Ji, Seunghwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.9
    • /
    • pp.1357-1366
    • /
    • 2022
  • It is important to quickly and accurately build a disaster network or tactical mobile communication network adapting to the field. In configuring the traditional wireless communication systems, the parameters of the base station are set through cell planning. However, for cell planning, information on the environment must be established in advance. If parameters which are not appropriate for the field are used, because they are not reflected in cell planning, additional optimization must be carried out to solve problems and improve performance after network construction. In this paper, we present a rapid mobile communication network construction and optimization method using artificial intelligence and SON technologies in mobile communication base stations. After automatically setting the base station parameters using the CNN model that classifies the terrain with path loss prediction through the DNN model from the location of the base station and the measurement information, the path loss model enables continuous overage/capacity optimization.

Interaction of Bone Marrow Stromal Stem Cells with Adhesive Protein and Polypeptide-adsorbed Poly(lactide-co-glycolide) Scaffolds (골수유래 간엽줄기세포와 점착성 단백질 및 폴리펩타이드가 흡착된(락티이드/글리콜라이드) 공중합체 지지체와의 상호작용)

  • Choi, Jin-San;Lee, Sang-Jin;Jang, Ji-Wook;Khang, Gil-Son;Lee, Young-Moo;Lee, Bong;Lee, Hai-Bang
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.397-404
    • /
    • 2003
  • The interaction of cell adhesive protein and polypeptide with bone marrow stromal stem cells (BMSCs) grown in tissue engineered films and scaffolds were examined. Several proteins or polypeptide known as cell-adhesive were coated adsorption on poly(lactide-co-glycolide) (PLGA) films and scaffolds and adhesion and proliferation behavior of BMSC on those surfaces were compared. The protein and polypeptide used include collagen IV, fibrinogen, laminin, gelatin, fibronectin, and poly(L-lysine). The protein and polypeptide were adsorbed on the PLGA film surfaces with almost monolayer coverage except poly(L-lysine). BMSCs were cultured for 1, 2, and 4 days on the protein- or polypeptide-adsorbed PLGA films and scaffolds. The cell adhesion and proliferation behaviors were assessed by sulforho damine B assay. It was observed that the protein- or polypeptide-adsorbed surfaces showed better cell adhesion and proliferation than the control.

Evaluation of response to stereotactic radiosurgery in patients with radioresistant brain metastases

  • Sayan, Mutlay;Mustafayev, Teuta Zoto;Sahin, Bilgehan;Kefelioglu, Erva Seyma Sare;Wang, Shang-Jui;Kurup, Varsha;Balmuk, Aykut;Gungor, Gorkem;Ohri, Nisha;Weiner, Joseph;Ozyar, Enis;Atalar, Banu
    • Radiation Oncology Journal
    • /
    • v.37 no.4
    • /
    • pp.265-270
    • /
    • 2019
  • Purpose: Renal cell carcinoma (RCC) and melanoma have been considered 'radioresistant' due to the fact that they do not respond to conventionally fractionated radiation therapy. Stereotactic radiosurgery (SRS) provides high-dose radiation to a defined target volume and a limited number of studies have suggested the potential effectiveness of SRS in radioresistant histologies. We sought to determine the effectiveness of SRS for the treatment of patients with radioresistant brain metastases. Materials and Methods: We performed a retrospective review of our institutional database to identify patients with RCC or melanoma brain metastases treated with SRS. Treatment response were determined in accordance with the Response Evaluation Criteria in Solid Tumors. Results: We identified 53 radioresistant brain metastases (28% RCC and 72% melanoma) treated in 18 patients. The mean target volume and coverage was 6.2 ± 9.5 mL and 95.5% ± 2.9%, respectively. The mean prescription dose was 20 ± 4.9 Gy. Forty lesions (75%) demonstrated a complete/partial response and 13 lesions (24%) with progressive/stable disease. Smaller target volume (p < 0.001), larger SRS dose (p < 0.001), and coverage (p = 0.008) were found to be positive predictors of complete response to SRS. Conclusion: SRS is an effective management option with up to 75% response rate for radioresistant brain metastases. Tumor volume and radiation dose are predictors of response and can be used to guide the decision-making for patients with radioresistant brain metastases.