• Title/Summary/Keyword: Cell Carrier

Search Result 565, Processing Time 0.026 seconds

Inter-Cell Cooperative Scheduling with Carrier Aggregation in LTE-Advanced System (LTE-Advanced 시스템의 반송파 집성(Carrier Aggregation)을 고려한 셀간 협력 스케쥴링 기법)

  • Yang, Chan S.;Cho, Kumin;Yu, Takki;Kang, Chung G.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.3
    • /
    • pp.151-161
    • /
    • 2014
  • 3GPP LTE-Advanced (Release 10) system specifies carrier aggregation (CA) to enable high data rate on using multiple frequency bands, including the variout CA-specific deployment scenarios. Considering one of those scenarios in which the different directional sector antenna is employed by each frequency band, we propose a per-carrier cell selection scheme that can improve the average throughput of the cell-edge users by allowing each user equipment (UE) to select the frequency band of the adjacent cell. Furthermore, a distributed algorithm for inter-cell copperative scheduling in this scheme is proposed to support proportional fairness among the cells. It has been shown that the proposed scheduling algorithm for the per-carrier cell selection scheme improves the cell-edge user throughput roughly by 50% over that of the conventional scheme.

A Simulated Study of Silicon Solar Cell Power Output as a Function of Minority-Carrier Recombination Lifetime and Substrate Thickness

  • Choe, Kwang Su
    • Korean Journal of Materials Research
    • /
    • v.25 no.9
    • /
    • pp.487-491
    • /
    • 2015
  • In photovoltaic power generation where minority carrier generation via light absorption is competing against minority carrier recombination, the substrate thickness and material quality are interdependent, and appropriate combination of the two variables is important in obtaining the maximum output power generation. Medici, a two-dimensional semiconductor device simulation tool, is used to investigate the interdependency in relation to the maximum power output in front-lit Si solar cells. Qualitatively, the results indicate that a high quality substrate must be thick and that a low quality substrate must be thin in order to achieve the maximum power generation in the respective materials. The dividing point is $70{\mu}m/5{\times}10^{-6}sec$. That is, for materials with a minority carrier recombination lifetime longer than $5{\times}10^{-6}sec$, the substrate must be thicker than $70{\mu}m$, while for materials with a lifetime shorter than $5{\times}10^{-6}sec$, the substrate must be thinner than $70{\mu}m$. In substrate fabrication, the thinner the wafer, the lower the cost of material, but the higher the cost of wafer fabrication. Thus, the optimum thickness/lifetime combinations are defined in this study along with the substrate cost considerations as part of the factors to be considered in material selection.

Analytic Capacity and Performance Models for CDMA Mobile Communication Systems with Multiple Carriers (복수개의 캐리어(Carrier)를 가진 CDMA 이동통신시스템의 용량 및 성능 분석을 위한 해석적 모형)

  • Paik, Chun-Hyun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.1
    • /
    • pp.126-137
    • /
    • 2007
  • This study addresses the analytic models for estimating the capacity and performance of the multi-carrierCDMA system where several carriers would be assigned to a single cell to accommodate the required trafficdemand. Two key features of the multi-carrier CDMA system, carrier selections of new calls and inter-camerhard handoffs, are accommodated in the models, Computation experiments are conducted to show the effectiveness of the proposed model.

A Study on the Selective Hole Carrier Extraction Layer for Application of Amorphous/crystalline Silicon Heterojunction Solar Cell (이종접합 실리콘 태양전지 적용을 위한 선택적 전하접합 층으로의 전이금속산화물에 관한 연구)

  • Kim, Yongjun;Kim, Sunbo;Kim, Youngkuk;Cho, Young Hyun;Park, Chang-kyun;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.3
    • /
    • pp.192-197
    • /
    • 2017
  • Hydrogenated Amorphous Silicon (a-Si:H) is used as an emitter layer in HIT (heterojunction with Intrinsic Thin layer) solar cells. Its low band gap and low optical properties (low transmittance and high absorption) cause parasitic absorption on the front side of a solar cell that significantly reduces the solar cell blue response. To overcome this, research on CSC (carrier Selective Contacts) is being actively carried out to reduce carrier recombination and improve carrier transportation as a means to approach the theoretical efficiency of silicon solar cells. Among CSC materials, molybdenum oxide ($MoO_x$) is most commonly used for the hole transport layer (HTL) of a solar cell due to its high work function and wide band gap. This paper analyzes the electrical and optical properties of $MoO_x$ thin films for use in the HTL of HIT solar cells. The optical properties of $MoO_x$ show better performance than a-Si:H and ${\mu}c-SiO_x:H$.

A Hierarchical Preamble Design Technique for Efficient Handover in OFDM-based Multi-hop Relay Systems (OFDM 기반 다중 홉 릴레이시스템에서 효율적인 핸드오버를 위한 계층적 프리앰블 설계 기법)

  • Yoo, Hyun-Il;Kim, Yeong-Jun;Woo, Kyung-Soo;Kim, Jae-Kwon;Yun, Sang-Boh;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.342-351
    • /
    • 2008
  • In this paper, a new handover procedure for OFDM-based multi-hop relay systems is proposed to reduce the handover overhead by distinguishing inter-cell handover event from intra-cell handover event at the level of physical layer using a hierarchical design concept of preamble. A Subcell ID concept for identifying RS in a cell is proposed in the design of hierarchical manner, in addition to the existing Cell ID for identifying BS. The decision on either inter-cell handover or intra-cell handover is made by the signal quality measure of CBINR(Carrier of BS to Interference and Noise Ratio) and CRINR(Carrier of RS to Interference and Noise Ratio), provided by the hierarchical preamble. The proposed handover procedure can simplify scanning procedure and skip/simplify network re-entry procedure (capability negotiation, authorization, registration), resulting in a significant reduction of handover overhead.

Simulated Study on the Effects of Substrate Thickness and Minority-Carrier Lifetime in Back Contact and Back Junction Si Solar Cells

  • Choe, Kwang Su
    • Korean Journal of Materials Research
    • /
    • v.27 no.2
    • /
    • pp.107-112
    • /
    • 2017
  • The BCBJ (Back Contact and Back Junction) or back-lit solar cell design eliminates shading loss by placing the pn junction and metal electrode contacts all on one side that faces away from the sun. However, as the electron-hole generation sites now are located very far from the pn junction, loss by minority-carrier recombination can be a significant issue. Utilizing Medici, a 2-dimensional semiconductor device simulation tool, the interdependency between the substrate thickness and the minority-carrier recombination lifetime was studied in terms of how these factors affect the solar cell power output. Qualitatively speaking, the results indicate that a very high quality substrate with a long recombination lifetime is needed to maintain the maximum power generation. The quantitative value of the recombination lifetime of minority-carriers, i.e., electrons in p-type substrates, required in the BCBJ cell is about one order of magnitude longer than that in the front-lit cell, i.e., $5{\times}10^{-4}sec$ vs. $5{\times}10^{-5}sec$. Regardless of substrate thickness up to $150{\mu}m$, the power output in the BCBJ cell stays at nearly the maximum value of about $1.8{\times}10^{-2}W{\cdot}cm^{-2}$, or $18mW{\cdot}cm^{-2}$, as long as the recombination lifetime is $5{\times}10^{-4}s$ or longer. The output power, however, declines steeply to as low as $10mW{\cdot}cm^{-2}$ when the recombination lifetime becomes significantly shorter than $5{\times}10^{-4}sec$. Substrate thinning is found to be not as effective as in the front-lit case in stemming the decline in the output power. In view of these results, for BCBJ applications, the substrate needs to be only mono-crystalline Si of very high quality. This bars the use of poly-crystalline Si, which is gaining wider acceptance in standard front-lit solar cells.

Lease management in the wireless industry through analysis of factors influencing cell site leases (이동통신회사의 임차료에 영향을 미치는 요인 분석을 통한 임차비용 관리방안 연구)

  • Lee, Jangho;Kwak, Choonjong
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.3
    • /
    • pp.143-150
    • /
    • 2013
  • A cell site lease is a legal agreement by which the owner of a building or a piece of land allows a wireless carrier to use part of it for a cell tower for a period of time in return for money. Wireless carriers spend significant money for cell site leases. This paper tries to find factors affecting cell site leases and management solutions to save lease costs. In other words, this research identifies any factor influencing cell site leases among age, gender, and geographical area in the first problem and determines management priorities using an importance-satisfaction model in the second problem. This paper can provide wireless carriers with effective decision making tools and a basis for negotiation of cell site leases, as they do not have enough bases for negotiation.

Distributed Carrier Aggregation in Small Cell Networks: A Game-theoretic Approach

  • Zhang, Yuanhui;Kan, Chunrong;Xu, Kun;Xu, Yuhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.4799-4818
    • /
    • 2015
  • In this paper, we investigate the problem of achieving global optimization for distributed carrier aggregation (CA) in small cell networks, using a game theoretic solution. To cope with the local interference and the distinct cost of intra-band and inter-band CA, we propose a non-cooperation game which is proved as an exact potential game. Furthermore, we propose a spatial adaptive play learning algorithm with heterogeneous learning parameters to converge towards NE of the game. In this algorithm, heterogeneous learning parameters are introduced to accelerate the convergence speed. It is shown that with the proposed game-theoretic approach, global optimization is achieved with local information exchange. Simulation results validate the effectivity of the proposed game-theoretic CA approach.

Role of Endogenous Transport Systems for the Transport of Basic and Acidic Drugs at Blood-Brain Barrier (염기성 및 산성 약물의 혈액-뇌관문 투과에 관여하는 내인적 수송계)

  • Kang, Young-Sook
    • Journal of Pharmaceutical Investigation
    • /
    • v.23 no.1
    • /
    • pp.1-9
    • /
    • 1993
  • The endothelial cell of brain capillary called the blood-brain barrier (BBB) has carrier-mediated transport systems for nutrients and drugs. The mechanism of the BBB transport of basic and acidic drugs has been reviewed and examined for endogenous transport systems in BBB in WKY and SHRSP. Acidic drugs such as salicylic acid and basic drugs such as eperisone are taken up in a carrier mediated manner through the BBB via the monocarboxylic acid and amine transport systems. The specific dysfunction for the choline transport at the BBB in SHRSP would affect the function of the brain endothelial cell and brain parenchymal cell. The utilization of the endogenous transport systems of monocarboxylic acid and amine could be promising strategy for the effective drug delivery to the brain.

  • PDF

Properties of Silicon Nitride Deposited by LF-PECVD with Various Thicknesses and Gas Ratios (가스비와 두께 가변에 따른 실리콘질화막의 특성)

  • Park, Je-Jun;Kim, Jin-Kuk;Lee, Hi-Deok;Kang, Gi-Hwan;Yu, Gwon-Jong;Song, Hee-Eun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.154-157
    • /
    • 2011
  • Hydrogenated silicon nitride deposited by LF-PECVD is commonly used for anti-reflection coating and passivation in silicon solar cell fabrication. The deposition of the optimized silicon nitride on the surface is elemental in crystalline silicon solar cell. In this work, the carrier lifetimes were measured while the thicknesses of $SiN_x$ were changed from 700 ${\AA}$ to 1150 ${\AA}$ with the gas flow of $SiH_4$ as 40 sccm and $NH_3$ as 120 sccm,. The carrier lifetime enhanced as the thickness of $SiN_x$ increased due to improved passivation effect. To study the characteristics of $SiN_x$ with various gas ratios, the gas flow of $NH_3$ was changed from 40 sccm to 200 sccm with intervals of 40 sccm. The thickness of $SiN_x$ was fixed as 1000 ${\AA}$ and the gas flow of $SiH_4$ as 40 sccm. The refractive index of SiNx and the carrier lifetime were measured before and after heat treating at $650^{\circ}C$ to investigate their change by the firing process in solar cell fabrication. The index of refraction of SiNx decreased as the gas ratios increased and the longest carrier lifetime was measured with the gas ratio $NH_3/SiH_4$ of 3.

  • PDF