• Title/Summary/Keyword: Cell Buffer

검색결과 703건 처리시간 0.025초

Effect of p-type a-SiO:H buffer layer at the interface of TCO and p-type layer in hydrogenated amorphous silicon solar cells

  • Kim, Youngkuk;Iftiquar, S.M.;Park, Jinjoo;Lee, Jeongchul;Yi, Junsin
    • Journal of Ceramic Processing Research
    • /
    • 제13권spc2호
    • /
    • pp.336-340
    • /
    • 2012
  • Wide band gap p-type hydrogenated amorphous silicon oxide (a-SiO:H) buffer layer has been used at the interface of transparent conductive oxide (TCO) and hydrogenated amorphous silicon (a-Si:H) p-type layer of a p-i-n type a-Si:H solar cell. Introduction of 5 nm thick buffer layer improves in blue response of the cell along with 0.5% enhancement of photovoltaic conversion efficiency (η). The cells with buffer layer show higher open circuit voltage (Voc), fill factor (FF), short circuit current density (Jsc) and improved blue response with respect to the cell without buffer layer.

The Characteristics of a Hydrogenated Amorphous Silicon Semitransparent Solar Cell When Applying n/i Buffer Layers

  • Lee, Da Jung;Yun, Sun Jin;Lee, Seong Hyun;Lim, Jung Wook
    • ETRI Journal
    • /
    • 제35권4호
    • /
    • pp.730-733
    • /
    • 2013
  • In this work, buffer layers with various conditions are inserted at an n/i interface in hydrogenated amorphous silicon semitransparent solar cells. It is observed that the performance of a solar cell strongly depends on the arrangement and thickness of the buffer layer. When arranging buffer layers with various bandgaps in ascending order from the intrinsic layer to the n layer, a relatively high open circuit voltage and short circuit current are observed. In addition, the fill factors are improved, owing to an enhanced shunt resistance under every instance of the introduced n/i buffer layers. Among the various conditions during the arrangement of the buffer layers, a reverse V shape of the energy bandgap is found to be the most effective for high efficiency, which also exhibits intermediate transmittance among all samples. This is an inspiring result, enabling an independent control of the conversion efficiency and transmittance.

동적 우선순위 제어방식을 사용한 ATM 스위치의 성능분석 (Performance Analysis of ATM Switch Using Dynamic Priority Control Mechanisms)

  • 박원기
    • 한국통신학회논문지
    • /
    • 제22권4호
    • /
    • pp.855-869
    • /
    • 1997
  • In this paper, we proposed two kids of dynamic priority control mechanisms controlling the cell service ratio in order to improve the QOS(Quality of Service). We also analyse theoretically the characteristics of cell loss probability and mean cell delay time by applying the proposed priority control mechanisms to ATM switch with output buffer. The proposed priority control mechanisms have the same principles of storing cells into buffer but the different principles of serving cells from buffer. The one is the control mechanism controlling the cell service ratio according to the relative cell occupancy ratio of buffer, the other is the control mechanism controlling the cell service ratio according to both the relative cell occupancy ratio of buffer and the average arrival rate. The two service classes of our concern are the delay sensitive class and the loss sensitive class. The analytical results show that the proposed control mechanisms are able to improve the QOS, the characteristics of cell loss probability and mean cell delay time, by selecting properly the relative cell occupancy ratio of buffer and the average arrival rate. conventional DLB algorithm does not support synchronous cells, but the proposed algorithm gives higher priority to synchronous cells. To reduce synchronous cell loss rate, the synchronous cell detector is used in the proposed algorithm. Synchronous cell detector detects synchronous cells, and passes them cells to the 2nd Leaky-Bucket. So it is similar to give higher priority to synchronous cells. In this paper, the proposed algorithm used audio/video traffic modeled by On/Off and Two-state MMPP, and simulated by SLAM II package. As simulation results, the proposed algorithm gets lower synchronous cell loss rate than the conventional DLB algorithms. The improved DLB algorithm for multimedia synchronization can be extended to any other cells which require higher priority.

  • PDF

ATM 스위치에서 폐기 임계치를 가진 셀전송비율 제어형 우선순위 제어방식의 성능 분석 (Performance analysis of priority control mechanism with cell transfer ratio and discard threshold in ATM switch)

  • 박원기;김영선;최형진
    • 한국통신학회논문지
    • /
    • 제21권3호
    • /
    • pp.629-642
    • /
    • 1996
  • ATM switch handles the traffic for a wide range of appliations with different QOS(Quality-of-Service) requirements. In ATM switch, the priority control mechanism is needed to improve effectively the required QOS requirements. In this paper, we propose a priority control mechanism using the cell transfer ratio type and discard threshold in order to archive the cell loss probability requirement and the delay requirement of each service class. The service classes of our concern are the service class with high time priority(class 1) and the service class with high loss priority control mechanism, cells for two kind of service classes are stored and processed within one buffer. In case cells are stored in the buffer, cells for class 2 are allocated in the stored and processed within one buffer. In case cells are stored in the buffer, cells for class 2 are allocated in the shole range of the buffer and cells for class 1 are allocated up to discard threshold of the buffer. In case cells in the buffer are transmitted, one cell for class 1 is transmitted whenever the maximum K cells for class 2 are transmitted consecutively. We analyze the time delay and the loss probability for each class of traffic using Markov chain. The results show that the characteristics of the mean cell delay about cells for class 1 becomes better and that of the cell loss probability about cells for class 2 becomes better by selecting properly discard threshold of the buffer and the cell transfer ratio according to the condition of input traffic.

  • PDF

ATM 망에서 공평한 지연 및 손실 우선순위 제어 (Fair delay and loss priority control in ATM networks)

  • 박창욱;임인칠
    • 전자공학회논문지A
    • /
    • 제33A권6호
    • /
    • pp.23-32
    • /
    • 1996
  • This paper proposes a new buffer management scheme to service delay-sensitive traffic and loss-sensitive traffic fairly in ATM networks. The proposed scheme uses tow buffers for delay-sensitive traffic and loss-sensitive traffic. To satisfy the average delay time of delay-sensitive traffic, cells in real-time buffer are served first. When congestion occurs in nonreal-time buffer, low loss priority cell in real-time buffer can be pushed out by high loss priority cell in nonreal-time buffer can be transferred to real-time buffer considering threshold value in real-time buffer. Using computer simulation, the existing methods and proposed scheme are compared and analyzed with respect to cell loss rate and average delay time. Simulation results show that the proposed scheme have superior performance to conventional schemes.

  • PDF

FMS 환경하의 효율적인 버버관리에 관한 연구 (An Efficient Buffer Management in a Multi-Cell Flexible Manufacturing Systems)

  • 이정표
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 1998년도 추계학술대회 및 정기총회
    • /
    • pp.128-132
    • /
    • 1998
  • This research is concerned with buffer management in a multi-cell FMS(Flexible Manufacturing System) with an AGVS(Automated Guided Vehicle System). To reduce blocking and starving caused by breakdowns, variablility in process times, and diversity of part routing, buffer is needed. Due to the high per unit buffer cost, which primarily consists of floor space and equipment cost, the total capacity of buffers in an FMS is very limited. Therefore, proper buffer management can provide a high system efficiency. This paper presents a buffer management model for a multi-cell FMS with an AGVS and a simulation study to compare the proposed model to a conventional buffer management model in a job shop FMS.

  • PDF

공유 버퍼형 순서 재정렬 ATM스위치에 관한 연구 (A Study on the Cell Resequence Method at the ATM Switch)

  • 박성헌;전용일박광채
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.273-276
    • /
    • 1998
  • This paper proposes a new Asynchronous Transfer Mode(ATM) switch architecture for the Broadband ISDN. The proposed switch has the architecture to prohibit the out-of-sequence in shared buffer switch system with being fixed buffer size in the out-buffered large scale ATM Switch System. then in this paper proposes cell resequence algorithm to decrease the out-of-sequence problem. also, we studied the out-of-sequence problem that was occurred by the cell transfer delay and the cell overflow due to the fixed buffer size when cell resequenced and we propose to implement optimal ACFIFO(Address Counter First In First Out) buffer size which has the minimized cell loss.

  • PDF

ZnS 완충층을 사용한 SrS : Ce, Cl 박막 EL 소자의 효율 (Luminous Efficiency of SrS:Ce, Cl EL Device with ZnS Buffer Layer)

  • 임영민;최광호;장보현
    • 한국광학회지
    • /
    • 제2권3호
    • /
    • pp.115-120
    • /
    • 1991
  • ZnS 완충층이 SrS : Ce, Cl 박막 EL cell의 발광휘도 및 효율에 미치는 영향을 조사하였다. ZnS 완충층을 사용한 cell과 사용하지 않은 cell의 구동전압은 각각 210V, 220V 이상이고 주파수 범위는 500 Hz-20kHz로 하였다. 측정범위 내에서 휘도는 주파수와 이동전하밀도의 곱에 비례하고, 한편 이동전하밀도는 주파수에 무관하고 구동전압에 비례한다. 결과적으로 발광효율은 주파수와 구동전압에 무관하다. 완충층을 사용하므로 활성층의 발광특성을 향상시킬 수 있으며, 발광효율은 완충층 유무에 따라 각각 0.12 lm/W, 0.06 lm/W 이다.

  • PDF

Improved Carrier Tunneling and Recombination in Tandem Solar Cell with p-type Nanocrystalline Si Intermediate Layer

  • Park, Jinjoo;Kim, Sangho;Phong, Pham duy;Lee, Sunwha;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • 제8권1호
    • /
    • pp.6-11
    • /
    • 2020
  • The power conversion efficiency (PCE) of a two-terminal tandem solar cell depends upon the tunnel-recombination junction (TRJ) between the top and bottom sub-cells. An optimized TRJ in a tandem cell helps improve its open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF), and efficiency (PCE). One of the parameters that affect the TRJ is the buffer layer thickness. Therefore, we investigated various TRJs by varying the thickness of the buffer or intermediate layer (TRJ-buffer) in between the highly doped p-type and n-type layers of the TRJ. The TRJ-buffer layer was p-type nc-Si:H, with a doping of 0.06%, an activation energy (Ea) of 43 meV, an optical gap (Eg) of 2.04 eV, and its thickness was varied from 0 nm to 125 nm. The tandem solar cells we investigated were a combination of a heterojunction with intrinsic thin layer (HIT) bottom sub-cell and an a-Si:H (amorphous silicon) top sub-cell. The initial cell efficiency without the TRJ buffer was 7.65% while with an optimized buffer layer, its efficiency improved to 11.74%, i.e., an improvement in efficiency by a factor of 1.53.

The influence of air gaps on buffer temperature within an engineered barrier system

  • Seok Yoon;Gi-Jun Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.4120-4124
    • /
    • 2023
  • High-level radioactive waste produced by nuclear power plants are disposed subterraneously utilizing an engineered barrier system (EBS). A gap inevitably exists between the disposal canisters and buffer materials, which may have a negative effect on the thermal transfer and water-blocking efficiency of the system. As few previous experimental works have quantified this effect, this study aimed to create an experimental model for investigating differences in the temperature changes of bentonite buffer in the presence and absence of air gaps between it and a surrounding stainless steel cell. Three test scenarios comprised an empty cell and cells partially or completely filled with bentonite. The temperature was measured inside the buffers and on the inner surface of their surrounding cells, which were artificially heated. The time required for the entire system to reach 100℃ was approximately 40% faster with no gap between the inner cell surface and the bentonite. This suggests that rock-buffer spaces should be filled in practice to ensure the rapid dissipation of heat from the buffer materials to their surroundings. However, it can be advantageous to retain buffer-canister gaps to lower the peak buffer temperature.