• Title/Summary/Keyword: Cell Apoptosis

Search Result 4,313, Processing Time 0.034 seconds

Protective effect of Eucommia ulmoides oliver leaves against PM2.5-induced oxidative stress in neuronal cells in vitro (미세먼지(PM2.5)로 유도된 산화적 스트레스에 대한 두충(Eucommia ulmoides Oliver) 잎의 in vitro 뇌 신경세포 보호 효과)

  • Kim, Min Ji;Kang, Jin Yong;Park, Seon Kyeong;Kim, Jong Min;Moon, Jong Hyun;Kim, Gil Han;Lee, Hyo Lim;Jeong, Hye Rin;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.4
    • /
    • pp.423-433
    • /
    • 2021
  • This study was performed to examine the neuroprotective effect of the ethyl acetate fraction from Eucommia ulmoides oliver leaf (EFEL) on PM2.5-induced cytotoxicity. EFEL had higher total phenolic and flavonoid contents than the other fractions. In ABTS and DPPH radical scavenging activities, the IC50 of EFEL was measured as 212.80 and 359.13 ㎍/mL, respectively. To investigate the neuroprotective effect of EFEL, MTT and DCF-DA assays were performed on HT22, MC-IXC, and BV-2 cells. EFEL effectively decreased PM2.5-induced intercellular reactive oxygen species (ROS) content and inhibited PM2.5-induced cell death. In the results of protein expression related to cellular cytotoxicity on microglial cells (BV-2), EFEL had an improvement effect on cell apoptosis and inflammatory pathways. Rutin and chlorogenic acid were identified as the main physiological compounds. Moreover, it was expected that EFEL, including rutin and chlorogenic acid, could be functional food substances with neuroprotective effects against PM2.5-induced oxidative stress.

Purification and Identification of Apoptosis Modulator Pipernonaline from Piper longum Linn. against Prostate Cancer Cells (필발(Piper longum Linn.)로부터 전립선암 세포사멸물질 pipernonaline의 분리 및 동정)

  • Kim, Kwang-Youn;Kim, Yun-Jin;Lee, Wan;Yu, Sun-Nyoung;Cho, Hyo-Jin;Lee, Sun-Yi;Lee, Han-Seung;Sohn, Jae-Hak;Oh, Hyuncheol;Ahn, Soon-Cheol
    • Journal of Life Science
    • /
    • v.19 no.5
    • /
    • pp.671-675
    • /
    • 2009
  • Prostate cancer has been a critical health problem due to an increase of prostate cancer-related deaths worldwide. Also, a frequent treatment option for prostate cancer is androgen ablation, but this treatment has a limited scope, especially for hormone-refractory cancer. There is an urgent need for the identification of alternative therapeutic strategies for prostate cancer. Previously, over one hundred species of dried-plant methanol extracts were tested for inhibitory effects on proliferation. One of them, Piper longum Linn. was selected based on its potent anti-proliferation effect. The dried root of P. longum Linn. was extracted with 100% methanol for 2-3 days and its extract was fractionated using chloroform. The chloroform layer was then subjected to column chromatography on silica gel, reverse phase-18 (RP-18) and Sephadex LH-20, in turn. Finally, the pure compound was obtained and identified as pipernonaline by NMR spectroscopic and physico-chemical analysis. In this study, anti-proliferation and cell cycle arrest effects of pipernonaline on human prostate cancer PC-3 cells were investigated using the MTT and PI staining, respectively. Our findings suggest that pipernonaline represents a dose-dependent growth inhibition pattern on PC-3 cells and, moreover, its growth inhibition is associated with sub-G1 and G0/G1 cell cycle accumulation in PC-3 cells. Also, these results provide an anticancer candidate for human prostate cancer.

DOX-MTX-NPs Augment p53 mRNA Expression in OSCC Model in Rat: Effects of IV and Oral Routes

  • Abbasi, Mehran Mesgari;Khiavi, Monir Moradzadeh;Monfaredan, Amir;Hamishehkar, Hamed;Seidi, Khaled;Jahanban-Esfahlan, Rana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.19
    • /
    • pp.8377-8382
    • /
    • 2014
  • Background: Oral squamous cell carcinoma (OSCC) is the sixth most common malignancy worldwide. Cancer development and progression require inactivation of tumor suppressor genes and activation of proto-oncogenes. The well recognized mechanism of action demonstrated for chemotherapeutic agents is induction of apoptosis via reactivation of p53. In this context, we evaluate the efficacy of IV and oral routes of our novel PH and temperature sensitive doxorubicin-methotrexate-loaded nanoparticles (DOX-MTX NP) in affecting p53 profile in an OSCC rat model. Methods: In this study, 120 male rats were divided into 8 groups of 15 animals each. The new formulated DOX-MTX NP and free doxorubicin were IV and orally given to rats with 4-nitroquinoline-1-oxide induced OSCC. Results: Results showed that both DOX and DOX-MTX-NP caused significant increase in mRNA levels of P53 compared to the untreated group (p<0.000). With both DOX and DOX-MTX NP, the IV mode was more effective than the oral (gavage) route (p<0.000). Surprisingly, in oral mode, p53 mRNA was not affected in DOX treated groups (p>0.05), Nonetheless, both IV and oral administration of MTX-DOX NP showed superior activity (~3 fold) over free DOX in reactivation of p53 in OSCC (p<0.000). The effectiveness of oral route in group treated with nanodrug accounts for the enhanced bioavailability of nanoparticulated DOX-MTX compared to free DOX. Moreover, in treated groups, tumor stage was markedly related to the amount of p53 mRNA (p<0.05). Conclusion: Both oral and IV application of our novel nanodrug possesses superior activity over free DOX-in up-regulation of p53 in a OSCC model and this increase in p53 level associated with less aggressive tumors in our study. Although, impressive results obtained with IV form of nanodrug (-21 fold increase in p53 mRNA level) but both forms of nanodrug are effective in OSCC, with less toxicity normal cells.

Silencing of Suppressor of Cytokine Signaling-3 due to Methylation Results in Phosphorylation of STAT3 in Imatinib Resistant BCR-ABL Positive Chronic Myeloid Leukemia Cells

  • Al-Jamal, Hamid AN;Jusoh, Siti Asmaa Mat;Yong, Ang Cheng;Asan, Jamaruddin Mat;Hassan, Rosline;Johan, Muhammad Farid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4555-4561
    • /
    • 2014
  • Background: Silencing due to methylation of suppressor of cytokine signaling-3 (SOCS-3), a negative regulator gene for the JAK/STAT signaling pathway has been reported to play important roles in leukemogenesis. Imatinib mesylate is a tyrosine kinase inhibitor that specifically targets the BCR-ABL protein and induces hematological remission in patients with chronic myeloid leukemia (CML). Unfortunately, the majority of CML patients treated with imatinib develop resistance under prolonged therapy. We here investigated the methylation profile of SOCS-3 gene and its downstream effects in a BCR-ABL positive CML cells resistant to imatinib. Materials and Methods: BCR-ABL positive CML cells resistant to imatinib (K562-R) were developed by overexposure of K562 cell lines to the drug. Cytotoxicity was determined by MTS assays and $IC_{50}$ values calculated. Apoptosis assays were performed using annexin V-FITC binding assays and analyzed by flow cytometry. Methylation profiles were investigated using methylation specific PCR and sequencing analysis of SOCS-1 and SOCS-3 genes. Gene expression was assessed by quantitative real-time PCR, and protein expression and phosphorylation of STAT1, 2 and 3 were examined by Western blotting. Results: The $IC_{50}$ for imatinib on K562 was 362nM compared to 3,952nM for K562-R (p=0.001). Percentage of apoptotic cells in K562 increased upto 50% by increasing the concentration of imatinib, in contrast to only 20% in K562-R (p<0.001). A change from non-methylation of the SOCS-3 gene in K562 to complete methylation in K562-R was observed. Gene expression revealed down-regulation of both SOCS-1 and SOCS-3 genes in resistant cells. STAT3 was phosphorylated in K562-R but not K562. Conclusions: Development of cells resistant to imatinib is feasible by overexposure of the drug to the cells. Activation of STAT3 protein leads to uncontrolled cell proliferation in imatinib resistant BCR-ABL due to DNA methylation of the SOCS-3 gene. Thus SOCS-3 provides a suitable candidate for mechanisms underlying the development of imatinib resistant in CML patients.

Study of hepatoprotective effect of Haegan-jeon through activation of nuclear factor erythroid 2-related factor 2 and optimization of herbal composition based on molecular mechanism (Nuclear factor erythroid 2-related factor 2 활성화를 통한 해간전(解肝煎)의 간세포 보호 효능 및 분자기전을 활용한 해간전(解肝煎) 구성 약물의 최적화 연구)

  • Kim, Jae Kwang;Jung, Ji Yun;Park, Sang Mi;Park, Chung A;Ku, Sae Kwang;Byun, Sung Hui;Cho, Il Je;Kim, Sang Chan
    • Herbal Formula Science
    • /
    • v.26 no.3
    • /
    • pp.207-221
    • /
    • 2018
  • Objectives : Present study investigated hepatoprotective effect of Haegan-jeon extract (HE) and tried to elucidate molecular mechanism involved. According to molecular mechanism, present study optimized herbal composition of HE (op-HE) and compared in vitro and in vivo hepatoprotective effects of op-HE to HE. Methods : For in vitro experiments, HepG2 cells were exposed to arachidonic acid (AA, $10{\mu}M$) and iron ($5{\mu}M$) for inducing oxidative stress. Cell viability, GSH contents, $H_2O_2$ production, mitochondrial membrane potential, immunoblot and reporter gene assay were performed to investigate cytoprotective effects and responsible molecular mechanisms. For in vivo experiments, hepatoprotective effect of HE and op-HE were assessed on $CCl_4-induced$ liver injury mice model. Results : HE pretreatment prevented AA+iron-mediated hepatocytes apoptosis. In addition, AA+iron-induced mitochondrial dysfunction, $H_2O_2$ production, glutathione depletion were reduced by HE pretreatment. In addition, nuclear factor erythroid 2-related factor 2 (Nrf2) phosphorylation, antioxidant response element (ARE)-driven reporter gene activity, and antioxidant genes expression were increased by HE. Based on reporter gene and MTT assays, we found that op-HE consisting three medicinal herbs also significantly increased transactivation of Nrf2 and reduced the AA+iron-mediated cytotoxicity. Moreover, in $CCl_4-induced$ liver injury mice model, HE-op had an ability to ameliorate $CCl_4-mediated$ increases in serum alanine transferase and aspartate aminotransferase activity, hepatic degeneration, inflammatory cell infiltration, and collagen deposition. Hepatoprotective effects of op-HE were comparable to those of HE. Conclusions : Present study suggests that op-HE as well as HE exhibit hepatoprotective effect against oxidative stress-mediated liver injury via Nrf2 activation.

Effect of Padina arborescens on $H_2O_2$-induced Oxidative Stress in Human Endothelial Cell line, ECV304 cells (부챗말 추출액이 $H_2O_2$에 의한 혈관내피세포주인 ECV304세포의 산화적 스트레스에 미치는 영향)

  • Park, Jin-Mo;Ju, Sung-Min;Jeon, Byung-Jae;Yang, Hyun-Mo;Choi, Han-Kil;Jeon, Byung-Hoon;Kim, Won-Sin
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.6
    • /
    • pp.1431-1438
    • /
    • 2008
  • The marine algae, Padina arborescens, have been used traditionally for treatment of various brain diseases. However, the molecular studies on the effect of Padina arborescens have not been carried out. In the present study, the protective effect of the water extract of Padina arborescens (PAWE) was researched in $H_2O_2$-treated human vascular endothelial cells, ECV304. ECV304 cells were pre-incubated with PAWE (0, 400, 800, 1,200 and $1,600{\mu}g/m{\ell}$) for 12 h and treated with 500 uM $H_2O_2$ for 12 h, and then the protective effects of PAWE were determined. PAWE recovered the $H_2O_2$-induced cell damage and decreased ROS production in ECV304 cells. Moreover, PAWE increased ERK expression and inhibited p38 and JNK expression. Furthermore, PAWE dosedependently increased the expression of heme oxygenase-1 (HO-1) and the HO-1 expression was reduced by ERK inhibitor treatment in $H_2O_2$-treated EVC304 cells. These results suggested that protective effect of PAWE on $H_2O_2$-induced oxidative stress in ECV304 cells might be associated with the production of HO-1 through the ERK signal pathway.

Anti-Cancer Effect of the Combination of Thiacremonone and Docetaxel by Inactivation of NF-κB in Human Cancer Cells

  • Ban, Jung-Ok;Cho, Jin-Suk;Hwang, In-Guk;Noh, Jin-Woo;Kim, Wun-Jae;Lee, Ung-Soo;Moon, Dong-Cheul;Jeong, Heon-Sang;Lee, Hee-Soon;Hwang, Bang-Yeon;Jung, Jae-Kyung;Han, Sang-Bae;Hong, Jin-Tae
    • Biomolecules & Therapeutics
    • /
    • v.17 no.4
    • /
    • pp.403-411
    • /
    • 2009
  • Thiacremonone, the main component isolated from heated garlic (Allium sativum L.), is interested for using as a cancer preventive or therapeutic agent since garlic has been known to be useful plant in the treatment of cancers. Nuclear factor kappaB (NF-${\kappa}B$) is constitutively activated in the prostate cancer and activation of NF-${\kappa}B$ is implicated in drug resistance in cancer cells. Docetaxel, a semisynthetic analog of paclitaxel, is an antineoplastic drug widely used for advanced various cancer. In previous studies, we found that thiacremonone inhibited activation of NF-${\kappa}B$ in cancer cells and marcrophages. In the present study, we investigated whether thiacremonone could increase susceptibility of prostate cancer cells (PC-3 and DU145) to docetaxel via inactivation of NF-${\kappa}B$. We found that the combination treatment of thiacremonone (50 ${\mu}g$/ml) with docetaxel (5 nM) was more effective in the inhibition of prostate cancer cell growth and induction of apoptosis accompanied with the significant inhibition of NF-${\kappa}B$ activity than those by the treatment of thiacremonone or docetaxel alone. It was also found that NF-${\kappa}B$ target gene expression of Bax, caspase-3 and caspase-9 was much more significantly enhanced, but the expression of Bcl-2 was also much more significantly inhibited by the combination treatment. These results indicate that thiacremonone inhibits NF-${\kappa}B$, and enhances the susceptibility of prostate cancer cells to docetaxel. Thus, thiacremonone could be useful as an adjuvant anti-cancer agent.

Effects of Rubus coreanus and Artemisia princeps Extracts on the Ultraviolet B-Induced DNA Damage Responses in HaCaT Cells (HaCaT 세포에서 자외선 B에 의해 유도된 DNA 상해반응에 대한 복분자와 쑥 추출물의 효과)

  • Lee, Seok Hee;Ha, Se Eun;Lee, Jun Kyoung;Park, Jong Kun
    • Journal of Life Science
    • /
    • v.24 no.2
    • /
    • pp.112-117
    • /
    • 2014
  • We investigated the effects of extracts from Rubus coreanus (RC) and Artemisia princeps var. orientalis (AP) on DNA damage response in ultraviolet B (UVB)-exposed HaCaT cells. Cell activity upon treatment for 24 h with RC or AP alone was similar to or greater than that of the nontreated control. When UVB-exposed cells were postincubated for 24 h in medium containing RC or AP, cell activity increased in a concentration-dependent manner. Nuclear fragmentation analysis showed that postincubation with RC or AP decreased UVB-induced apoptosis by about 20% and 15%, respectively, of that in cells postincubated with growth medium. When UVB-exposed cells were postincubated for 24 h in medium containing RC or AP, the level of cyclobutane pyrimidine dimer decreased in a concentration- dependent manner. Western blot analysis showed that treatment of cells not exposed to UVB with RC or AP alone did not significantly change the levels of phospho-p53 and GADD45 protein. Interestingly, when UVB-exposed cells were postincubated for 24 h in medium containing RC or AP, phospho-p53 and GADD45 levels decreased in a concentration dependent manner. Our results suggest that RC and AP extract assist the survival of UVB-exposed cells in parallel with a decrease in levels of UVB-induced DNA damage and damage-response proteins, such as p53 and GADD45.

Cucurbitacin-I, a Naturally Occurring Triterpenoid, Inhibits the CD44 Expression in Human Ovarian Cancer Cells (난소암 세포주의 CD44 발현에 미치는 Cucurbitacin-I의 효과)

  • Seo, Hee Won;Kim, Jin-Kyung
    • Journal of Life Science
    • /
    • v.28 no.6
    • /
    • pp.733-737
    • /
    • 2018
  • Cucurbitacin-I, a natural triterpenoid derived from Cucurbitaceae family plants, exhibits a number of potentially useful pharmacological and biological activities. Indeed, the previous study demonstrated that cucurbitacin-I reduced the proliferation of colon cancer cells by enhancing apoptosis and causing cell cycle arrest at the G2/M phase. CD44, a type I transmembrane protein with the function of adhering to cells, mediates between the extracellular matrix and other cells through hyaluronic acid. Recent studies have demonstrated that an overexpression of the CD44 membrane receptor results in tumor initiation and growth, specific behaviors of cancer stem cells, the development of drug resistance, and metastasis. The aim was to examine the effect of cucurbitacin-I on CD44 expression human ovarian cancer cells because the effect of cucurbitacin-I on CD44 expression has not been reported. The expressions of CD44 mRNA and protein were detected using a quantitative real-time reverse-transcription polymerase chain reaction and a Western blot analysis, respectively. Treatment with cucurbitacin-I inhibited the expression of CD44 mRNA and protein. A subsequent analysis revealed that cucurbitacin-I blocked the phosphorylation of activator protein-1 (AP-1) and nuclear factor kappa-B ($NF-{\kappa}B$), which are key regulators of CD44 expression. Taken together, the data demonstrate that cucurbitacin-I regulates the AP-1 and $NF-{\kappa}B$ signaling pathways, leading to decreased CD44 expression.

Long Noncoding RNA HOXA11-AS Modulates the Resistance of Nasopharyngeal Carcinoma Cells to Cisplatin via miR-454-3p/c-Met

  • Lin, Feng-Jie;Lin, Xian-Dong;Xu, Lu-Ying;Zhu, Shi-Quan
    • Molecules and Cells
    • /
    • v.43 no.10
    • /
    • pp.856-869
    • /
    • 2020
  • To elucidate the mechanism of action of HOXA11-AS in modulating the cisplatin resistance of nasopharyngeal carcinoma (NPC) cells. HOXA11-AS and miR-454-3p expression in NPC tissue and cisplatin-resistant NPC cells were measured via quantitative reverse transcriptase polymerase chain reaction. NPC parental cells (C666-1 and HNE1) and cisplatin-resistant cells (C666-1/DDP and HNE1/DDP) were transfected and divided into different groups, after which the MTT method was used to determine the inhibitory concentration 50 (IC50) of cells treated with different concentrations of cisplatin. Additionally, a clone formation assay, flow cytometry and Western blotting were used to detect DDP-induced changes. Thereafter, xenograft mouse models were constructed to verify the in vitro results. Obviously elevated HOXA11-AS and reduced miR-454-3p were found in NPC tissue and cisplatin-resistant NPC cells. Compared to the control cells, cells in the si-HOXA11-AS group showed sharp decreases in cell viability and IC50, and these results were reversed in the miR-454-3p inhibitor group. Furthermore, HOXA11-AS targeted miR-454-3p, which further targeted c-Met. In comparison with cells in the control group, HNE1/DDP and C666-1/DDP cells in the si-HOXA11-AS group demonstrated fewer colonies, with an increase in the apoptotic rate, while the expression levels of c-Met, p-Akt/Akt and p-mTOR/mTOR decreased. Moreover, the si-HOXA11-AS-induced enhancement in sensitivity to cisplatin was abolished by miR-454-3p inhibitor transfection. The in vivo experiment showed that DDP in combination with si-HOXA11-AS treatment could inhibit the growth of xenograft tumors. Silencing HOXA11-AS can inhibit the c-Met/AKT/mTOR pathway by specifically upregulating miR-454-3p, thus promoting cell apoptosis and enhancing the sensitivity of cisplatin-resistant NPC cells to cisplatin.