Browse > Article
http://dx.doi.org/10.14348/molcells.2020.0133

Long Noncoding RNA HOXA11-AS Modulates the Resistance of Nasopharyngeal Carcinoma Cells to Cisplatin via miR-454-3p/c-Met  

Lin, Feng-Jie (Department of Head & Neck Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital)
Lin, Xian-Dong (Laboratory of Radiation Oncology and Radiobiology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital)
Xu, Lu-Ying (Department of Head & Neck Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital)
Zhu, Shi-Quan (Department of Pharmacy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital)
Abstract
To elucidate the mechanism of action of HOXA11-AS in modulating the cisplatin resistance of nasopharyngeal carcinoma (NPC) cells. HOXA11-AS and miR-454-3p expression in NPC tissue and cisplatin-resistant NPC cells were measured via quantitative reverse transcriptase polymerase chain reaction. NPC parental cells (C666-1 and HNE1) and cisplatin-resistant cells (C666-1/DDP and HNE1/DDP) were transfected and divided into different groups, after which the MTT method was used to determine the inhibitory concentration 50 (IC50) of cells treated with different concentrations of cisplatin. Additionally, a clone formation assay, flow cytometry and Western blotting were used to detect DDP-induced changes. Thereafter, xenograft mouse models were constructed to verify the in vitro results. Obviously elevated HOXA11-AS and reduced miR-454-3p were found in NPC tissue and cisplatin-resistant NPC cells. Compared to the control cells, cells in the si-HOXA11-AS group showed sharp decreases in cell viability and IC50, and these results were reversed in the miR-454-3p inhibitor group. Furthermore, HOXA11-AS targeted miR-454-3p, which further targeted c-Met. In comparison with cells in the control group, HNE1/DDP and C666-1/DDP cells in the si-HOXA11-AS group demonstrated fewer colonies, with an increase in the apoptotic rate, while the expression levels of c-Met, p-Akt/Akt and p-mTOR/mTOR decreased. Moreover, the si-HOXA11-AS-induced enhancement in sensitivity to cisplatin was abolished by miR-454-3p inhibitor transfection. The in vivo experiment showed that DDP in combination with si-HOXA11-AS treatment could inhibit the growth of xenograft tumors. Silencing HOXA11-AS can inhibit the c-Met/AKT/mTOR pathway by specifically upregulating miR-454-3p, thus promoting cell apoptosis and enhancing the sensitivity of cisplatin-resistant NPC cells to cisplatin.
Keywords
cisplatin; c-Met; drug resistance; HOXA11-AS; miR-454-3p; nasopharyngeal carcinoma;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kong, F., Cai, B., Lin, S., Zhang, J., Wang, Y., and Fu, Q. (2015). Assessment of radiotherapy combined with adjuvant chemotherapy in the treatment of patients with advanced nasopharyngeal carcinoma: a prospective study. J. BUON 20, 206-211.
2 Li, T., Xu, C., Cai, B., Zhang, M., Gao, F., and Gan, J. (2016). Expression and clinicopathological significance of the lncRNA HOXA11-AS in colorectal cancer. Oncol. Lett. 12, 4155-4160.   DOI
3 Li, Y., Zhang, S., Tang, Z., Chen, J., and Kong, W. (2011). Silencing of c-Met by RNA interference inhibits the survival, proliferation, and invasion of nasopharyngeal carcinoma cells. Tumour Biol. 32, 1217-1224.   DOI
4 Liu, Z., Chen, Z., Fan, R., Jiang, B., Chen, X., Chen, Q., Nie, F., Lu, K., and Sun, M. (2017). Over-expressed long noncoding RNA HOXA11-AS promotes cell cycle progression and metastasis in gastric cancer. Mol. Cancer 16, 82.   DOI
5 Lu, Q., Zhao, N., Zha, G., Wang, H., Tong, Q., and Xin, S. (2017). LncRNA HOXA11-AS exerts oncogenic functions by repressing p21 and miR-124 in uveal melanoma. DNA Cell Biol. 36, 837-844.   DOI
6 Lv, W.P., Li, M.X., and Wang, L. (2017). Peroxiredoxin 1 inhibits lipopolysaccharide-induced oxidative stress in lung tissue by regulating P38/JNK signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 21, 1876-1883.
7 Niu, G., Li, B., Sun, J., and Sun, L. (2015). miR-454 is down-regulated in osteosarcomas and suppresses cell proliferation and invasion by directly targeting c-Met. Cell Prolif. 48, 348-355.   DOI
8 Que, W., Chen, J., Chuang, M., and Jiang, D. (2012). Knockdown of c-Met enhances sensitivity to bortezomib in human multiple myeloma U266 cells via inhibiting Akt/mTOR activity. APMIS 120, 195-203.   DOI
9 Song, J., Ye, A., Jiang, E., Yin, X., Chen, Z., Bai, G., Zhou, Y., and Liu, J. (2018). Reconstruction and analysis of the aberrant lncRNA-miRNA-mRNA network based on competitive endogenous RNA in CESC. J. Cell. Biochem. 119, 6665-6673.   DOI
10 Sun, M., Nie, F., Wang, Y., Zhang, Z., Hou, J., He, D., Xie, M., Xu, L., De, W., Wang, Z., et al. (2016). LncRNA HOXA11-AS promotes proliferation and invasion of gastric cancer by scaffolding the chromatin modification factors PRC2, LSD1, and DNMT1. Cancer Res. 76, 6299-6310.   DOI
11 Tan, Y., Wei, X., Zhang, W., Wang, X., Wang, K., Du, B., and Xiao, J. (2017). Resveratrol enhances the radiosensitivity of nasopharyngeal carcinoma cells by downregulating E2F1. Oncol. Rep. 37, 1833-1841.   DOI
12 Tang, X.L., Yan, L., Zhu, L., Jiao, D.M., Chen, J., and Chen, Q.Y. (2017). Salvianolic acid A reverses cisplatin resistance in lung cancer A549 cells by targeting c-met and attenuating Akt/mTOR pathway. J. Pharmacological Sciences 135, 1-7.   DOI
13 Vadlakonda, L., Pasupuleti, M., and Pallu, R. (2013). Role of PI3K-AKTmTOR and Wnt signaling pathways in transition of G1-S phase of cell cycle in cancer cells. Front. Oncol. 3, 85.   DOI
14 Wang, Y., Cheng, N., and Luo, J. (2017). Downregulation of lncRNA ANRIL represses tumorigenicity and enhances cisplatin-induced cytotoxicity via regulating microRNA let-7a in nasopharyngeal carcinoma. J. Biochem. Mol. Toxicol. 31, e21904.   DOI
15 Wang, Z., Huang, Y., and Zhang, J. (2014). Molecularly targeting the PI3K-Akt-mTOR pathway can sensitize cancer cells to radiotherapy and chemotherapy. Cell. Mol. Biol. Lett. 19, 233-242.   DOI
16 Wu, X., Ding, N., Hu, W., He, J., Xu, S., Pei, H., Hua, J., Zhou, G., and Wang, J. (2014). Down-regulation of BTG1 by miR-454-3p enhances cellular radiosensitivity in renal carcinoma cells. Radiat. Oncol. 9, 179.   DOI
17 Zhang, Y., He, R.Q., Dang, Y.W., Zhang, X.L., Wang, X., Huang, S.N., Huang, W.T., Jiang, M.T., Gan, X.N., Xie, Y., et al. (2016). Comprehensive analysis of the long noncoding RNA HOXA11-AS gene interaction regulatory network in NSCLC cells. Cancer Cell Int. 16, 89.   DOI
18 Yu, J., Hong, J.F., Kang, J., Liao, L.H., and Li, C.D. (2017). Promotion of LncRNA HOXA11-AS on the proliferation of hepatocellular carcinoma by regulating the expression of LATS1. Eur. Rev. Med. Pharmacol. Sci. 21, 3402-3411.
19 Zhang, L., Chen, Q.Y., Liu, H., Tang, L.Q., and Mai, H.Q. (2013). Emerging treatment options for nasopharyngeal carcinoma. Drug Des. Devel. Ther. 7, 37-52.   DOI
20 Zhang, Y., Chen, W.J., Gan, T.Q., Zhang, X.L., Xie, Z.C., Ye, Z.H., Deng, Y., Wang, Z.F., Cai, K.T., Li, S.K., et al. (2017). Clinical significance and effect of lncRNA HOXA11-AS in NSCLC: a study based on bioinformatics, in vitro and in vivo verification. Sci. Rep. 7, 5567.   DOI
21 Zhang, Y., Yuan, Y., Li, Y., Zhang, P., Chen, P., and Sun, S. (2019). An inverse interaction between HOXA11 and HOXA11-AS is associated with cisplatin resistance in lung adenocarcinoma. Epigenetics 14, 949-960.   DOI
22 Zhao, X., Li, X., Zhou, L., Ni, J., Yan, W., Ma, R., Wu, J., Feng, J., and Chen, P. (2018). LncRNA HOXA11-AS drives cisplatin resistance of human LUAD cells via modulating miR-454-3p/Stat3. Cancer Sci. 109, 3068-3079.   DOI
23 Zhou, L., Qu, Y.M., Zhao, X.M., and Yue, Z.D. (2016). Involvement of miR-454 overexpression in the poor prognosis of hepatocellular carcinoma. Eur. Rev. Med. Pharmacol. Sci. 20, 825-829.
24 Zhuang, R., Rao, J.N., Zou, T., Liu, L., Xiao, L., Cao, S., Hansraj, N.Z., Gorospe, M., and Wang, J.Y. (2013). miR-195 competes with HuR to modulate stim1 mRNA stability and regulate cell migration. Nucleic Acids Res. 41, 7905-7919.   DOI
25 Colaco, R.J., Betts, G., Donne, A., Swindell, R., Yap, B.K., Sykes, A.J., Slevin, N.J., Homer, J.J., and Lee, L.W. (2013). Nasopharyngeal carcinoma: a retrospective review of demographics, treatment and patient outcome in a single centre. Clin. Oncol. (R. Coll. Radiol.) 25, 171-177.   DOI
26 Bao, X., Ren, T., Huang, Y., Sun, K., Wang, S., Liu, K., Zheng, B., and Guo, W. (2017). Knockdown of long non-coding RNA HOTAIR increases miR-454-3p by targeting Stat3 and Atg12 to inhibit chondrosarcoma growth. Cell Death Dis. 8, e2605.   DOI
27 Bayne, K. (1996). Revised guide for the care and use of laboratory animals available. American Physiological Society. Physiologist 39, 199, 208-211.
28 Chen, Q.Y., Wen, Y.F., Guo, L., Liu, H., Huang, P.Y., Mo, H.Y., Li, N.W., Xiang, Y.Q., Luo, D.H., Qiu, F., et al. (2011). Concurrent chemoradiotherapy vs radiotherapy alone in stage II nasopharyngeal carcinoma: phase III randomized trial. J. Natl. Cancer Inst. 103, 1761-1770.   DOI
29 Fang, B., Zhu, J., Wang, Y., Geng, F., and Li, G. (2015). MiR-454 inhibited cell proliferation of human glioblastoma cells by suppressing PDK1 expression. Biomed. Pharmacother. 75, 148-152.   DOI
30 Dai, C., Xie, Y., Zhuang, X., and Yuan, Z. (2018). MiR-206 inhibits epithelial ovarian cancer cells growth and invasion via blocking c-Met/AKT/mTOR signaling pathway. Biomed. Pharmacother. 104, 763-770.   DOI
31 Han, S., Liang, Y., Li, Y., and Du, W. (2016). Long noncoding RNA identification: comparing machine learning based tools for long noncoding transcripts discrimination. Biomed Res. Int. 2016, 8496165.
32 Han, S., Park, K., Bae, B.N., Kim, K.H., Kim, H.J., Kim, Y.D., and Kim, H.Y. (2003). E2F1 expression is related with the poor survival of lymph nodepositive breast cancer patients treated with fluorouracil, doxorubicin and cyclophosphamide. Breast Cancer Res. Treat. 82, 11-16.   DOI
33 Hung, C.M., Kuo, D.H., Chou, C.H., Su, Y.C., Ho, C.T., and Way, T.D. (2011). Osthole suppresses hepatocyte growth factor (HGF)-induced epithelialmesenchymal transition via repression of the c-Met/Akt/mTOR pathway in human breast cancer cells. J. Agric. Food Chem. 59, 9683-9690.   DOI
34 Hung, J.J., Hsueh, C.T., Chen, K.H., Hsu, W.H., and Wu, Y.C. (2012). Clinical significance of E2F1 protein expression in non-small cell lung cancer. Exp. Hematol. Oncol. 1, 18.   DOI
35 Jia, W.H. and Qin, H.D. (2012). Non-viral environmental risk factors for nasopharyngeal carcinoma: a systematic review. Semin. Cancer Biol. 22, 117-126.   DOI
36 Kamran, S.C., Riaz, N., and Lee, N. (2015). Nasopharyngeal carcinoma. Surg. Oncol. Clin. N. Am. 24, 547-561.   DOI