• Title/Summary/Keyword: Cdc7

Search Result 96, Processing Time 0.034 seconds

Licochalcone C Induces Autophagy in Gefitinib-sensitive or-resistant Human Non-small Cell Lung Cancer Cells (Gefitinib-민감성 또는 내성 비소세포폐암 세포에서 Licochalcone C에 의한 자가포식 유도)

  • Oh, Ha-Na;Yoon, Goo;Chae, Jung-Il;Shim, Jung-Hyun
    • Journal of Life Science
    • /
    • v.29 no.12
    • /
    • pp.1305-1313
    • /
    • 2019
  • Licochalcone (LC), isolated from the roots of Glycyrrhiza inflata has multiple pharmacological effects including anti-inflammatory and anti-tumor activities. To date, Licochalcone C (LCC) has induced apoptosis and inhibited cell proliferation in oral and bladder cancer cells, but lung cancer has not yet been studied. In addition, no study reported LCC-induced autophagy in cancer until now. The present study was designed to investigate the effect of LCC on gefitinib-sensitive and -resistant lung cancer cells and elucidate the mechanism of its action. The 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay data showed that LCC significantly inhibited cell viability in non-small cell lung cancer (NSCLC) HCC827 (gefitinib-sensitive) and HCC827GR (gefitinib-resistant) cell lines. Interestingly, Annexin V/7-aminoactinomycin D double staining and cell cycle analysis showed an apoptosis rate within about 20% at the highest concentration of LCC. LCC induced G2/M arrest by reducing the expression of the cell cycle G2/M related proteins cyclin B1 and cdc2 in NSCLC cell lines. Treatment of LCC also induced autophagy by increasing the expression of the autophagy marker protein microtubule-associated protein 1 light chain 3 (LC3) and the protein autophagy-related gene 5 involved in the autophagy process. In addition, LCC increased the production of reactive oxygen species (ROS), and the cell viability was partially restored by treatment with the ROS inhibitor N-acetyl-L-cysteine. In western blotting analysis, the expression of cdc2 was increased and LC3 was decreased by the simultaneous treatment of NAC and LCC. These results indicate that LCC may contribute to anti-tumor effects by inducing ROS-dependent G2/M arrest and autophagy in NSCLC. In conclusion, LCC treatment may be useful as a potential therapeutic agent against NSCLC.

Studies of the Effects of Acupuncture Stimulation at Huatuo Jiaji(EX B2) Points on Axonal Regeneration of Injured Sciatic Nerve in the Rats (화타협척혈 침자극에 의한 손상 말초신경의 재생효과에 관한 연구)

  • Kim, Dae-Feel;Park, Young-Hoi;Keum, Dong-Ho
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.18 no.4
    • /
    • pp.39-61
    • /
    • 2008
  • Objectives : The present study was performed to investigate whether acupuncture stimulation in the rats affected regeneration properties of the injured sciatic nerve. A differential effect of acupuncture stimulation on the one point near the spinal nerve root controlling sciatic nerve activity and the other point in the peripheral area subordinated by injured nerve was compared. Materials and Methods: Rat sciatic nerves were injured by crush, and the effects on axonal regeneration on injured sciatic nerves were evaluated by acupuncture stimulation at two different regions. In proximal acupuncture stimulation group, acupuncture stimulation was performed on Huatuo Jiaji(EX B2) points located from L5 to S1 vertebral levels to stimulate the nearest spinal nerve root that innervates sciatic nerves. In distal acupuncture stimulation group, acupuncture stimulation was performed on Zusanli(ST 36) and Weizhong(BL 40) points to stimulate at peripheral area dominated by injured sciatic nerves. Acupuncture stimulation was given every other days for 1 or 2 weeks. Sciatic nerve tissues collected from acupuncture stimulation experimental groups, injury control group, and intact animal group were used for protein analysis by Western blotting or Hoechst nuclear staining. To determine axonal regeneration, Dil fluorescence dye was injected into the sciatic nerve 0.5 cm distal to the injury site in individual animal groups and Dil-labeled cells by retrograde tracing were measured in the DRG at lumbar 5 or in the spinal cord. DRG sensory neurons prepared from individual animal groups were used to measure the extent of neurite outgrowth and for immunofluorescence staining with anti-GAP-43 antibody. Results : Animal groups given proximal or distal acupuncture stimulation showed upregulation of GAP-43 and Cdc2 protein levels in the sciatic nerve at 7 days after injury. Cdk2 protein levels were strongly induced by nerve injury, but did not show changes by acupuncture stimulation. Phospho-Erk1/2 protein levels were elevated by acupuncture stimulation above those present in the injury control animals. These increase in regeneration-associated protein levels appeared to be related with increase cell proliferation in the injured sciatic nerves. Hoechst 33258 staining of sciatic nerve tissue to visualize nuclei of individual cells showed increased Schwann cell number in the distal portion of the injured nerve 7 and 14 days after injury and further increases by acupuncture stimulation particularly at the proximal position. Measurement of axonal regeneration by retrograde tracing showed significantly increased Dil-labeled cells in proximal acupuncture stimulation group compared to distal acupuncture stimulation group and injury control group. Finally, an evaluation of axonal regeneration by retrograde tracing showed increased number of Dil labeled cells in the DRG at lumbar 5 or in the ventral horn of the spinal cord at lower thoracic level at 7 days after nerve injury. Conclusions : The present data show that the proximal acupuncture stimulation at Huatuo Jiaji(EX B2) points governing injured sciatic nerves was more effective for axonal regeneration than the distal acupuncture stimulation. Further studies on functional recovery or associated molecular mechanisms should be critical for developing animal models and clinical applications.

Myristoleic Acid Promotes Anagen Signaling by Autophagy through Activating Wnt/β-Catenin and ERK Pathways in Dermal Papilla Cells

  • Choi, Youn Kyung;Kang, Jung-Il;Hyun, Jin Won;Koh, Young Sang;Kang, Ji-Hoon;Hyun, Chang-Gu;Yoon, Kyung-Sup;Lee, Kwang Sik;Lee, Chun Mong;Kim, Tae Yang;Yoo, Eun-Sook;Kang, Hee-Kyoung
    • Biomolecules & Therapeutics
    • /
    • v.29 no.2
    • /
    • pp.211-219
    • /
    • 2021
  • Alopecia is a distressing condition caused by the dysregulation of anagen, catagen, and telogen in the hair cycle. Dermal papilla cells (DPCs) regulate the hair cycle and play important roles in hair growth and regeneration. Myristoleic acid (MA) increases Wnt reporter activity in DPCs. However, the action mechanisms of MA on the stimulation of anagen signaling in DPCs is not known. In this study, we evaluated the effects of MA on anagen-activating signaling pathways in DPCs. MA significantly increased DPC proliferation and stimulated the G2/M phase, accompanied by increasing cyclin A, Cdc2, and cyclin B1. To elucidate the mechanism by which MA promotes DPC proliferation, we evaluated the effect of MA on autophagy and intracellular pathways. MA induced autophagosome formation by decreasing the levels of the phospho-mammalian target of rapamycin (phospho-mTOR) and increasing autophagy-related 7 (Atg7) and microtubule-associated protein 1A/1B-light chain 3II (LC3II). MA also increased the phosphorylation levels of Wnt/β-catenin proteins, such as GSK3β (Ser9) and β-catenin (Ser552 and Ser675). Treatment with XAV939, an inhibitor of the Wnt/β-catenin pathway, attenuated the MA-induced increase in β-catenin nuclear translocation. Moreover, XAV939 reduced MA-induced effects on cell cycle progression, autophagy, and DPC proliferation. On the other hand, MA increased the levels of phospho (Thr202/Tyr204)-extracellular signal regulated kinases (ERK). MA-induced ERK phosphorylation led to changes in the expression levels of Cdc2, Atg7 and LC3II, as well as DPC proliferation. Our results suggest that MA promotes anagen signaling via autophagy and cell cycle progression by activating the Wnt/β-catenin and ERK pathways in DPCs.

Ventilator-associated Pneumonia with Circuit Changes Every 7 Days versus Every 14 Days (회로 교환주기에 따른 인공호흡기 관련 폐렴발생률 차이)

  • Choi, Jeong-Sil;Yeon, Jeong-Haw
    • Journal of Korean Academy of Nursing
    • /
    • v.40 no.6
    • /
    • pp.799-807
    • /
    • 2010
  • Purpose: To determine whether the practice of not routinely changing ventilator circuits in patients who require prolonged mechanical ventilation is associated with ventilator-associated pneumonia (VAP). Methods: Patients were divided into two groups, ventilator circuits were routinely changed every 7 days for the control group (39) and every 14 days for the experimental group (40) over a period of 1 yr (April 1, 2009-March 31, 2010). Pediatric patients (age 17 yr or less) were not included. VAP was diagnosed by the criteria of the Centers of Disease Control and Prevention (CDC). Incidence of VAP and characteristics of infection were evaluated. Results: In the experimental group, 2 episodes of pneumonia were observed in 40 patients and 1,322 ventilator days. The rate of VAP was 1.5 per 1,000 ventilator days. There was 1 episode of pneumonia in 39 patients and 481 ventilator days for the control group. The rate of VAP was 2.1 per 1,000 ventilator days. The difference between both groups was not significant (p=.695). Conclusion: Extending ventilator circuit change interval from 7 days to 14 days does not increase the risk for VAP.

Let-7c Inhibits NSCLC Cell Proliferation by Targeting HOXA1

  • Zhan, Min;Qu, Qiang;Wang, Guo;Liu, Ying-Zi;Tan, Sheng-Lan;Lou, Xiao-Ya;Yu, Jing;Zhou, Hong-Hao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.387-392
    • /
    • 2013
  • Objective: The aim of the present study was to explore mechanisms by which let-7c suppresses NSCLC cell proliferation. Methods: The expression level of let-7c was quantified by qRT-PCR. A549 and H1299 cells were transfected with let-7c mimics to restore the expression of let-7c. The effects of let-7c were then assessed by cell proliferation, colony formation and cell cycle assay. Mouse experiments were used to confirm the effect of let-7c on tumorigenicity in vivo. Luciferase reporter assays and Western blotting were performed to identify target genes for let-7c. Results: HOXA1 was identified as a novel target of let-7c. MTS, colony formation and flow cytometry assays demonstrated that forced expression of let-7c inhibited NSCLC cell proliferation by inducing G1 arrest in vitro, consistent with inhibitory effects induced by knockdown of HOXA1. Mouse experiments demonstrated that let-7c expression suppressed tumorigenesis. Furthermore, we found that let-7c could regulate the expression of HOXA1 downstream effectors CCND1, CDC25A and CDK2. Conclusions: Collectively, these results demonstrate let-7c inhibits NSCLC cell proliferation and tumorigenesis by partial direct targeting of the HOXA1 pathway, which suggests that restoration of let-7c expression may thus offer a potential therapeutic intervention strategy for NSCLC.

Inhibition of mouse SP2/0 myeloma cell growth by the B7-H4 protein vaccine

  • Mu, Nan;Liu, Nannan;Hao, Qiang;Xu, Yujin;Li, Jialin;Li, Weina;Wu, Shouzhen;Zhang, Cun;Su, Haichuan
    • BMB Reports
    • /
    • v.47 no.7
    • /
    • pp.399-404
    • /
    • 2014
  • B7-H4 is a member of B7 family of co-inhibitory molecules and B7-H4 protein is found to be overexpressed in many human cancers and which is usually associated with poor survival. In this study, we developed a therapeutic vaccine made from a fusion protein composed of a tetanus toxoid (TT) T-helper cell epitope and human B7-H4IgV domain (TT-rhB7-H4IgV). We investigated the anti-tumor effect of the TT-rhB7-H4IgV vaccine in BALB/c mice and SP2/0 myeloma growth was significantly suppressed in mice. The TT-rhB7-H4IgV vaccine induced high-titer specific antibodies in mice. Further, the antibodies induced by TT-rhB7-H4IgV vaccine were capable of depleting SP2/0 cells through complement-dependent cytotoxicity (CDC) in vitro. On the other hand, the poor cellular immune response was irrelevant to the therapeutic efficacy. These results indicate that the recombinant TT-rhB7-H4IgV vaccine might be a useful candidate of immunotherapy for the treatment of some tumors associated with abnormal expression of B7-H4.

Factors Related to Surgical Site Infections in Patients Undergoing General Surgery (일반외과 환자의 수술부위 감염 관련 요인 분석)

  • Ahn You-Jin;Sohng Kyeong-Yae
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.12 no.1
    • /
    • pp.113-120
    • /
    • 2005
  • Purpose: To identify risk factors for surgical site infections in patients undergoing general surgery, to analyze the prolonged hospital stay and extra cost for antibiotics, and to provide basic data for control of surgical site infections. Method: Surgical site infection was defined using the definition of the CDC and the data were analyzed by $x^2$-test and unpaired t-test. Results: The prevalence of surgical site infections was 9.7%, and it was related to wound class, duration of operation, number of operations, whether the operation was an emergency, trauma, drains, preoperative stays, presence of remote infection during operative period, and previous history of recent surgery. The mean duration for post-operative stay when a surgical site infection occurred was 9.5 days and in 56.9 % of the patients the surgical site infection appeared 7 days after the operation. Post-operative stays for infected patients were 20.3 days longer than that of uninfected patients. The mean cost of antibiotics for infected patients was higher than that for uninfected patients by 561,067 won per person. Conclusion: Surgical site infection results in an increased length of stay and extra-cost, thus, hospitals need to create strategies to reduce nosocomial infections through effective infection surveillance and by considering factors related to surgical site infections.

  • PDF

A Study Regarding Bacterial Contamination of Surfaces in Dental Offices (치과진료실 내 표면 세균 오염에 관한 연구)

  • Yun, Kyoung-Ok;Kim, Hye-Young
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.4
    • /
    • pp.279-285
    • /
    • 2015
  • This study studied samples taken off surfaces at three sites (Unit chairs, light handles, cuspidors) of 19 dental hospitals and 28 clinics located in Gyeonggi-do and Incheon, South Korea. The bacterial contamination levels of surfaces were $44.82{\times}10^3CFU/mL$ in cuspidors, higher than in unit chairs ($5.47{\times}10^3CFU/mL$) and light handles ($16.28{\times}10^3CFU/mL$). The values were statistically higher at dental hospitals than at dental clinics, the greater number of patients being associated with the higher bacterial cell count in the cuspidors. The results of identifying the strains isolated purely from surfaces at dental clinic showed Gram positive 47.3% and Gram negative 52.7%. Among Gram positive, the most numberous bacteria were Micrococcus luteus (10.9%), Bacillus pumilus (3.6%), and Staphylococcus aureus (3.6%). Among Gram negative, the most numberous bacteria were Acinetobacter ursingii (5.5%), Brevundimonas diminuta (4.5%), Chryseobacterium (Flavo.) indologenes (CDC IIb) (4.5%), and Methylobacterium sp. (4.5%). This study measures the level of bacterial contamination and identifies the strains isolated in dental clinics. It recognizes the importance of infection control, and the results of the study may be considered as the basis for establishing specific plans for prevention of infection.

Modulation of Cell Cycle Regulators by Sulforaphane in Human Mepatocarcinoma HepG2 Cells (HepG2 인체간암세포의 세포주기조절인자 발현에 미치는 sulforaphane의 영향)

  • Bae, Song-Ja;Kim, Gi-Young;Yoo, Young-Hyun;Choi, Byung-Tae;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.16 no.7 s.80
    • /
    • pp.1235-1242
    • /
    • 2006
  • Sulforaphane, an isothiocyanate derived from hydrolysis of glucoraphanin in broccoli and other cruciferous vegetables, was shown to induce phase II detoxification enzymes and inhibit chemically induced mammary tumors in rodents. Recently, sulforaphane is known to induce cell cycle arrest and apoptosis in human canter cells, however its molecular mechanisms are poorly understood. In tile present study, we demonstrated that sulforaphane acted to inhibit proliferation and induce morphological changes of human hepatocarcinoma HepG2 cells. Treatment of HepG2 cells with $10{\mu}M\;or\;15{\mu}M$ sulforaphane resulted in significant G2/M cell cycle arrest as determined by DNA flow cytometry. Moreover, $20{\mu}M$ sulforaphane significantly induced the population of sub-G1 cells suggesting that sulforaphane induced apoptosis. This anti-proliferative effect of sulforaphane was accompanied by a marked inhibition of ryclin A, cyclin 31 and Cdc2 protein. However, the levels of tumor suppressor p53 and Cdk inhibitor p21 mRNA and protein expression were significantly increased by sulforaphane treatment in a concentration-dependent manner. Although further studies are needed, the present work suggests that sulforaphane may be a potential rhemoprevetiveichemotherapeucc agent for the treatment of human cancer cells.

p53 Nuclear Accumulation as a Possible Biomarker for Biological Radio-dosimetry in Oral Mucosal Epithelial Cells

  • Kim, Youn-Young;Kim, Jong-il;Kim, Jin;Yook, Jong-In;Kim, The-Hwan;Son, Young-Sook
    • BMB Reports
    • /
    • v.34 no.2
    • /
    • pp.123-129
    • /
    • 2001
  • Cellular response to ionizing radiation is affected by cell types, radiation doses, and post-irradiation time. Based on the trypan blue dye exclusion assay in normal oral mucosal cells (OM cells), a 48 h post-irradiation was sufffcient and an adequate time point for the evaluation of radiation sensitivity Its $LD_{50}$ was approximately 1.83 Gy To investigate possible biomarkers useful for the biological radiodosimetry of normal epithelial cells (p53, c-fos, cyclin D1, cdc-2, pRb) EGF receptor phosphorylation and Erk activation were evaluated at different radiation doses and different post-irradiation times. From 0.5 Gy, p53 was accumulated in the nucleus of basal cells of the OM raft culture at 4 h post-irradiation and sustained up to 24 h post-irradiation, which suggests that radiation-induced apoptosis or damage repair was not yet completed. The number of p53 positive cells and biosynthesis of p53 were correlated with radiation doses. Both cyclin D1 and c-fos were only transiently induced within 1 h post-irradiation. Cyclin D1 was induced at all radiation doses. However, cfos induction was highest at 0.1 Gy, approximately 7.3 fold more induction than the control, whose induction was reduced in a reverse correlation with radiation dose. The phosphorylation pattern of cdc-2 and pRb were unaffected by radiation. In contrast to A431 tails overexpressing the EGF receptor approximately 8.5 fold higher than normal epithelial, the OM cells reduced the basal level of the EGF receptor phosphorylation in a radiation dose dependent fashion. In conclusion, among radiation-induced biomolecules, the p53 nuclear accumulation may be considered for the future development of a useful marker far biological radiodosimetry in normal epithelial tissue since it was sustained for a longer period and showed a dose response relationship. Specific c-fos induction at a low dose may also be an important finding in this study It needs to be studied further for the elucidation of its possible connection with the low dose radio-adaptive response.

  • PDF