Browse > Article
http://dx.doi.org/10.4062/biomolther.2020.169

Myristoleic Acid Promotes Anagen Signaling by Autophagy through Activating Wnt/β-Catenin and ERK Pathways in Dermal Papilla Cells  

Choi, Youn Kyung (Department of Medicine, School of Medicine, Jeju National University)
Kang, Jung-Il (Department of Medicine, School of Medicine, Jeju National University)
Hyun, Jin Won (Department of Medicine, School of Medicine, Jeju National University)
Koh, Young Sang (Department of Medicine, School of Medicine, Jeju National University)
Kang, Ji-Hoon (Department of Medicine, School of Medicine, Jeju National University)
Hyun, Chang-Gu (Jeju Research Center for Natural Medicine, Jeju National University)
Yoon, Kyung-Sup (Department of Chemistry & Cosmetics, Jeju National University)
Lee, Kwang Sik (DSongpa R&D Center, Coreana Cosmetic Co., Ltd)
Lee, Chun Mong (DSongpa R&D Center, Coreana Cosmetic Co., Ltd)
Kim, Tae Yang (DSongpa R&D Center, Coreana Cosmetic Co., Ltd)
Yoo, Eun-Sook (Department of Medicine, School of Medicine, Jeju National University)
Kang, Hee-Kyoung (Department of Medicine, School of Medicine, Jeju National University)
Publication Information
Biomolecules & Therapeutics / v.29, no.2, 2021 , pp. 211-219 More about this Journal
Abstract
Alopecia is a distressing condition caused by the dysregulation of anagen, catagen, and telogen in the hair cycle. Dermal papilla cells (DPCs) regulate the hair cycle and play important roles in hair growth and regeneration. Myristoleic acid (MA) increases Wnt reporter activity in DPCs. However, the action mechanisms of MA on the stimulation of anagen signaling in DPCs is not known. In this study, we evaluated the effects of MA on anagen-activating signaling pathways in DPCs. MA significantly increased DPC proliferation and stimulated the G2/M phase, accompanied by increasing cyclin A, Cdc2, and cyclin B1. To elucidate the mechanism by which MA promotes DPC proliferation, we evaluated the effect of MA on autophagy and intracellular pathways. MA induced autophagosome formation by decreasing the levels of the phospho-mammalian target of rapamycin (phospho-mTOR) and increasing autophagy-related 7 (Atg7) and microtubule-associated protein 1A/1B-light chain 3II (LC3II). MA also increased the phosphorylation levels of Wnt/β-catenin proteins, such as GSK3β (Ser9) and β-catenin (Ser552 and Ser675). Treatment with XAV939, an inhibitor of the Wnt/β-catenin pathway, attenuated the MA-induced increase in β-catenin nuclear translocation. Moreover, XAV939 reduced MA-induced effects on cell cycle progression, autophagy, and DPC proliferation. On the other hand, MA increased the levels of phospho (Thr202/Tyr204)-extracellular signal regulated kinases (ERK). MA-induced ERK phosphorylation led to changes in the expression levels of Cdc2, Atg7 and LC3II, as well as DPC proliferation. Our results suggest that MA promotes anagen signaling via autophagy and cell cycle progression by activating the Wnt/β-catenin and ERK pathways in DPCs.
Keywords
Myristoleic acid; Dermal papilla cells; Anagen; Autophagy; $Wnt/{\beta}$-catenin; ERK;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Belleudi, F., Purpura, V., Caputo, S. and Torrisi, M. R. (2014) FGF7/KGF regulates autophagy in keratinocytes: a novel dual role in the induction of both assembly and turnover of autophagosomes. Autophagy 10, 803-821.   DOI
2 Buhl, A. E., Waldon, D. J., Conrad, S. J., Mulholland, M. J., Shull, K. L., Kubicek, M. F., Johnson, G. A., Brunden, M. N., Stefanski, K. J., Stehle, R. G., Gadwood, R. C., Kamdar, B. V., Thomasco, L. M., Schostarez, H. J., Schwartz, T. M. and Diani, A. R. (1992) Potassium channel conductance: a mechanism affecting hair growth both in vitro and in vivo. J. Invest. Dermatol. 98, 315-319.   DOI
3 Busca, R., Pouyssegur, J. and Lenormand, P. (2016) ERK1 and ERK2 map kinases: specific roles or functional redundancy? Front. Cell Dev. Biol. 4, 53.
4 Parodi, C., Hardman, J. A., Allavena, G., Marotta, R., Catelani, T., Bertolini, M., Paus, R. and Grimaldi, B. (2018) Autophagy is essential for maintaining the growth of a human (mini-)organ: evidence from scalp hair follicle organ culture. PLoS Biol. 16, e2002864.   DOI
5 Peng, Y., Cao, J., Yao, X. Y., Wang, J. X., Zhong, M. Z., Gan, P. P. and Li, J. H. (2017) TUSC3 induces autophagy in human non-small cell lung cancer cells through Wnt/beta-catenin signaling. Oncotarget 8, 52960-52974.   DOI
6 Chambard, J. C., Lefloch, R., Pouyssegur, J. and Lenormand, P. (2007) ERK implication in cell cycle regulation. Biochim. Biophys. Acta 1773, 1299-1310.   DOI
7 Cai, B., Zheng, Y., Yan, J., Wang, J., Liu, X. and Yin, G. (2019) BMP2-mediated PTEN enhancement promotes differentiation of hair follicle stem cells by inducing autophagy. Exp. Cell Res. 385, 111647.   DOI
8 Castilho, R. M., Squarize, C. H., Chodosh, L. A., Williams, B. O. and Gutkind, J. S. (2009) mTOR mediates Wnt-induced epidermal stem cell exhaustion and aging. Cell Stem Cell 5, 279-289.   DOI
9 Chai, M., Jiang, M., Vergnes, L., Fu, X., de Barros, S. C., Doan, N. B., Huang, W., Chu, J., Jiao, J., Herschman, H., Crooks, G. M., Reue, K. and Huang, J. (2019) Stimulation of hair growth by small molecules that activate autophagy. Cell Rep. 27, 3413-3421.e3.   DOI
10 Quan, L. H., Zhang, C., Dong, M., Jiang, J., Xu, H., Yan, C., Liu, X., Zhou, H., Zhang, H., Chen, L., Zhong, F. L., Luo, Z. B., Lam, S. M., Shui, G., Li, D. and Jin, W. (2020) Myristoleic acid produced by enterococci reduces obesity through brown adipose tissue activation. Gut 69, 1239-1247.   DOI
11 Saxton, R. A. and Sabatini, D. M. (2017) mTOR signaling in growth, metabolism, and disease. Cell 169, 361-371.   DOI
12 Sennett, R. and Rendl, M. (2012) Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling. Semin. Cell Dev. Biol. 23, 917-927.   DOI
13 Shi, B., Ma, M., Zheng, Y., Pan, Y. and Lin, X. (2019) mTOR and Beclin1: two key autophagy-related molecules and their roles in myocardial ischemia/reperfusion injury. J. Cell. Physiol. 234, 12562-12568.   DOI
14 Spirli, C., Locatelli, L., Morell, C. M., Fiorotto, R., Morton, S. D., Cadamuro, M., Fabris, L. and Strazzabosco, M. (2013) Protein kinase a-dependent pSer(675)-beta-catenin, a novel signaling defect in a mouse model of congenital hepatic fibrosis. Hepatology 58, 1713-1723.   DOI
15 Pantelireis, N. and Higgins, C. A. (2018) A bald statement - current approaches to manipulate miniaturisation focus only on promoting hair growth. Exp. Dermatol. 27, 959-965.   DOI
16 Springer, K., Brown, M. and Stulberg, D. L. (2003) Common hair loss disorders. Am. Fam. Physician 68, 93-102.
17 Iguchi, K., Okumura, N., Usui, S., Sajiki, H., Hirota, K. and Hirano, K. (2001) Myristoleic acid, a cytotoxic component in the extract from Serenoa repens, induces apoptosis and necrosis in human prostatic LNCaP cells. Prostate 47, 59-65.   DOI
18 Han, J. H., Kwon, O. S., Chung, J. H., Cho, K. H., Eun, H. C. and Kim, K. H. (2004) Effect of minoxidil on proliferation and apoptosis in dermal papilla cells of human hair follicle. J. Dermatol. Sci. 34, 91-98.   DOI
19 Hosking, A. M., Juhasz, M. and Atanaskova Mesinkovska, N. (2019) Complementary and alternative treatments for alopecia: a comprehensive review. Skin Appendage Disord. 5, 72-89.   DOI
20 Huang, H. C., Lin, H. and Huang, M. C. (2019) Lactoferrin promotes hair growth in mice and increases dermal papilla cell proliferation through Erk/Akt and Wnt signaling pathways. Arch. Dermatol. Res. 311, 411-420.   DOI
21 Ito, M., Yang, Z., Andl, T., Cui, C., Kim, N., Millar, S. E. and Cotsarelis, G. (2007) Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 447, 316-320.   DOI
22 Jiang, J., Wolk, A. and Vessby, B. (1999) Relation between the intake of milk fat and the occurrence of conjugated linoleic acid in human adipose tissue. Am. J. Clin. Nutr. 70, 21-27.   DOI
23 Kim, J. Y. and Dao, H. (2020) Physiology, Integument. StatPearls, Treasure Island (FL).
24 Kraft, C. and Martens, S. (2012) Mechanisms and regulation of autophagosome formation. Curr. Opin. Cell Biol. 24, 496-501.   DOI
25 Kwack, M. H., Kang, B. M., Kim, M. K., Kim, J. C. and Sung, Y. K. (2011) Minoxidil activates beta-catenin pathway in human dermal papilla cells: a possible explanation for its anagen prolongation effect. J. Dermatol. Sci. 62, 154-159.   DOI
26 Couvreur, S., Hurtaud, C., Lopez, C., Delaby, L. and Peyraud, J. L. (2006) The linear relationship between the proportion of fresh grass in the cow diet, milk fatty acid composition, and butter properties. J. Dairy Sci. 89, 1956-1969.   DOI
27 Chen, D., Wu, X., Zheng, J., Dai, R., Mo, Z., Munir, F., Ni, X. and Shan, Y. (2018) Autophagy regulates proliferation and biliary differentiation of hepatic oval cells via the MAPK/ERK signaling pathway. Mol. Med. Rep. 17, 2565-2571.
28 Chi, W., Wu, E. and Morgan, B. A. (2013) Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline. Development 140, 1676-1683.   DOI
29 Choi, N., Shin, S., Song, S. U. and Sung, J. H. (2018) Minoxidil promotes hair growth through stimulation of growth factor release from adipose-derived stem cells. Int. J. Mol. Sci. 19, 691.   DOI
30 Stenn, K. S. and Paus, R. (2001) Controls of hair follicle cycling. Physiol. Rev. 81, 449-494.   DOI
31 Fan, Q., Yang, L., Zhang, X., Ma, Y., Li, Y., Dong, L., Zong, Z., Hua, X., Su, D., Li, H. and Liu, J. (2018) Autophagy promotes metastasis and glycolysis by upregulating MCT1 expression and Wnt/betacatenin signaling pathway activation in hepatocellular carcinoma cells. J. Exp. Clin. Cancer Res. 37, 9.   DOI
32 Frudd, K., Burgoyne, T. and Burgoyne, J. R. (2018) Oxidation of Atg3 and Atg7 mediates inhibition of autophagy. Nat. Commun. 9, 95.   DOI
33 Fung, T. S. and Liu, D. X. (2019) The ER stress sensor IRE1 and MAP kinase ERK modulate autophagy induction in cells infected with coronavirus infectious bronchitis virus. Virology 533, 34-44.   DOI
34 Golias, C. H., Charalabopoulos, A. and Charalabopoulos, K. (2004) Cell proliferation and cell cycle control: a mini review. Int. J. Clin. Pract. 58, 1134-1141.   DOI
35 Greco, V., Chen, T., Rendl, M., Schober, M., Pasolli, H. A., Stokes, N., Dela Cruz-Racelis, J. and Fuchs, E. (2009) A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell 4, 155-169.   DOI
36 Yoshihara, N., Ueno, T., Takagi, A., Oliva Trejo, J. A., Haruna, K., Suga, Y., Komatsu, M., Tanaka, K. and Ikeda, S. (2015) The significant role of autophagy in the granular layer in normal skin differentiation and hair growth. Arch. Dermatol. Res. 307, 159-169.   DOI
37 Su, N., Wang, P. and Li, Y. (2016) Role of Wnt/beta-catenin pathway in inducing autophagy and apoptosis in multiple myeloma cells. Oncol. Lett. 12, 4623-4629.   DOI
38 Sun, Y., Liu, W. Z., Liu, T., Feng, X., Yang, N. and Zhou, H. F. (2015) Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J. Recept. Signal Transduct. Res. 35, 600-604.   DOI
39 Talavera-Adame, D., Newman, D. and Newman, N. (2017) Conventional and novel stem cell based therapies for androgenic alopecia. Stem Cells Cloning 10, 11-19.   DOI
40 Yoshii, S. R. and Mizushima, N. (2017) Monitoring and measuring autophagy. Int. J. Mol. Sci. 18, 1865.   DOI
41 Zou, Z., Tao, T., Li, H. and Zhu, X. (2020) mTOR signaling pathway and mTOR inhibitors in cancer: progress and challenges. Cell Biosci. 10, 31.   DOI
42 Madaan, A., Verma, R., Singh, A. T. and Jaggi, M. (2018) Review of Hair Follicle Dermal Papilla cells as in vitro screening model for hair growth. Int. J. Cosmet. Sci. 40, 429-450.   DOI
43 Lachgar, S., Charveron, M., Gall, Y. and Bonafe, J. L. (1998) Minoxidil upregulates the expression of vascular endothelial growth factor in human hair dermal papilla cells. Br. J. Dermatol. 138, 407-411.   DOI
44 Laplante, M. and Sabatini, D. M. (2012) mTOR signaling in growth control and disease. Cell 149, 274-293.   DOI
45 Lee, E. Y., Choi, E. J., Kim, J. A., Hwang, Y. L., Kim, C. D., Lee, M. H., Roh, S. S., Kim, Y. H., Han, I. and Kang, S. (2016) Malva verticillata seed extracts upregulate the Wnt pathway in human dermal papilla cells. Int. J. Cosmet. Sci. 38, 148-154.   DOI
46 Malumbres, M. and Barbacid, M. (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer 9, 153-166.   DOI
47 Meisheri, K. D., Cipkus, L. A. and Taylor, C. J. (1988) Mechanism of action of minoxidil sulfate-induced vasodilation: a role for increased K+ permeability. J. Pharmacol. Exp. Ther. 245, 751-760.
48 Mysore, V. and Shashikumar, B. M. (2016) Guidelines on the use of finasteride in androgenetic alopecia. Indian J. Dermatol. Venereol. Leprol. 82, 128-134.   DOI
49 Melcangi, R. C., Caruso, D., Abbiati, F., Giatti, S., Calabrese, D., Piazza, F. and Cavaletti, G. (2013) Neuroactive steroid levels are modified in cerebrospinal fluid and plasma of post-finasteride patients showing persistent sexual side effects and anxious/depressive symptomatology. J. Sex. Med. 10, 2598-2603.   DOI
50 Kwon, J. O., Jin, W. J., Kim, B., Kim, H. H. and Lee, Z. H. (2015) Myristoleic acid inhibits osteoclast formation and bone resorption by suppressing the RANKL activation of Src and Pyk2. Eur. J. Pharmacol. 768, 189-198.   DOI