• Title/Summary/Keyword: CdTe single crystal

Search Result 39, Processing Time 0.023 seconds

Photocurrent study on the splitting of the valence band and growth of $Cdln_2Te_4$ single crystal by Bridgman method (Bridgman법에 의한 $Cdln_2Te_4$단결정의 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • 홍광준;이관교;이봉주;박진성;신동찬
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.3
    • /
    • pp.132-138
    • /
    • 2003
  • A stoichiometric mixture for $CdIn_2Te_4$ single crystal was prepared from horizontal electric furnace. The $CdIn_2Te_4$ single crystal was grown in the three-stage vertical electric furnace by using Bridgman method. The $CdIn_2Te_4$ single crystal was evaluated to be tetragonal by the power method. The (001) growth plane of oriented $CdIn_2Te_4$ single crystal was confirmed from back-reflection Laue patterns. The carrier density and mobility of $CdIn_2Te_4$ single crystal measured with Hall effect by van der Pauw method are $8.61\times 1016 \textrm {cm}^{-3}$ and 242 $\textrm{cm}^2$/V.s at 293 K, respectively. The temperature dependence of the energy band gap of the $CdIn_2Te_4$ single crystal obtained from the absorption spectra was well described by the Varshni's relation, $1.4750ev - (7.69\times10^{-3})\; ev/k)\;T^2$/(T + 2147k).The crystal field and the spin-orbit splitting energies for the valence band of the $CdIn_2Te_4$ single crystal have been estimated to be 0.2704 eV and 0.1465 eV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the $\Delta$so definitely exists in the $\Gamma_7$ states of the valence band of the $CdIn_2Te_4$ single crystal. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1-} B_{1-}$ and Cl-exciton peaks for n = 1.

Properties of Photoluminescence and Growth of CdIn2Te4 Single Crystal by Bridgeman method (Bridgeman법에 의한 CdIn2Te4 단결정 성장과 광발광 특성)

  • Moon, Jong-Dae
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.273-281
    • /
    • 2003
  • A stoichiometric mixture for $CdIn_2Te_4$ single crystal was prepared from horizontal electric furnace. The $CdIn_2Te_4$ single crystal was grown in the three-stage vertical electric furnace by using Bridgeman method. The quality of the grown crystal has been investigated by the x-ray diffraction and the photoluminescence measurements. The (001) growth plane of oriented $CdIn_2Te_4$ single crystal was confirmed from back-reflection Laue patterns. The carrier density and mobility of $CdIn_2Te_4$ single crystal measured with Hall effect by van der Pauw method are $8.61{\times}10^{16}\;cm^{-3}$ and $242\;cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CdIn_2Te_4$ single crystal obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=1.4750\;eV-(7.69{\times}10^{-3}\;eV)T^2/(T+2147)$. After the as-grown $CdIn_2Te_4$ single crystal was annealed in Cd-, In-, and Te-atmospheres, the origin of point defects of $CdIn_2Te_4$ single crystal has been investigated by the photoluminescence(PL) at 10 K. The native defects of $V_{Te}$, $Cd_{int}$, and $V_{Cd}$, $Te_{int}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the Cd-atmosphere converted $CdIn_2Te_4$ single crystal to an optical n-type. Also, we confirmed that In in $CdIn_2Te_4$ did not form the native defects because In in $CdIn_2Te_4$ single crystal existed in the form of stable bonds.

Properties for the $CdIn_2Te_4$ Single Crystal

  • Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.179-182
    • /
    • 2004
  • The $p-CdIn_2Te_4$ single crystal was grown in the three-stage vertical electric furnace by using Bridgman method. The quality of the grown crystal has been investigated by the x-ray diffraction and the photoluminescence measurements. From the Photoluminescence spectra of the as-grown $CdIn_2Te_4$ crystal and the various heat-treated crystals, the $(D^{o},X)$ emission was found to be the dominant intensity in the photoluminescence spectrum of the $CdIn_2Te_4:Cd$, while the $(A^{o},X)$ emission completely disappeared in the $CdIn_2Te_4:Cd$. However, the $(A^{o},X)$ emission in the photoluminescence spectrum of the $CdIn_2Te_4:Te$ was the dominant intensity like an as-grown $p-CdIn_2Te_4$ crystal. These results indicated that the $(D^{o},X)$ is associated with $V_{Te}$ acted as donor and that the $(A^{o},X)$ emission is related to $V_{Cd}$ acted as acceptor, respectively. The $p-CdIn_2Te_4$ crystal was found to be obviously converted into the n-type after annealing in the Cd atmosphere. The origin of $(D^{o},\;A^{o})$ emission and its TO Phonon replicas is related to the interaction between donors such as $V_{Te}$ or $Cd_{int}$, and accepters such as $V_{Cd}$ or $Te_{int}$. Also, the In in the $CdIn_2Te_4$ was confirmed not to form the native defects because it existed in the stable form of bonds.

  • PDF

A Study on the CdTe Single Crystal Growth by Vertical Bridgman Method (수직 Bridgman 법에 의한 CdTe 단결정 성장에 관한 연구)

  • Lee, Jong-Ki;Kim, Wook;Baik, Hong-Koo
    • Journal of Korea Foundry Society
    • /
    • v.10 no.4
    • /
    • pp.324-331
    • /
    • 1990
  • The single crystal of CdTe was grown by modified 6 zone Bridgman method under the conditions of excess Te and excess Cd. To prevent the constitutional supercooling, the crystal growth was done under the temperature gradient of $17^{\circ}C/cm$ in front of the solid /liquid interface and the growth rate was 3mm/hr. The grain morphologies and the growth mechanism were investigated in excess Te and excess Cd conditions. The grain size of excess Te crystal was increased with an increase of the distance from the tip but, in the case of excess Cd crystal, single crystal was not obtained because of the cavities due to the excess Cd vapors so that the grain size was not increased with an increase of the distance from the tip. In addition, the growth of single crystal of CdTe was done with repeated necking ampoule. It was found that the necking had no effects on the grain selection because the cavities trapped in the necking portion acted as heterogeneous nucleation sites.

  • PDF

Thermal dissociation of excitons bound to neutral acceptors in CdTe single crystal (CdTe 단결정에서 중성 받게에 구속된 엑시톤의 열 해리)

  • 박효열
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.185-188
    • /
    • 2000
  • The dissociation of excitons bounds to neutral accepter in CdTe single crystal was investigated by measurement of temperature dependence of the photoluminescence spectra. The binding energies of CdTe single crystal were determined by PL spectrum at 12K. The free exciton (X) binding energy, the exciton binding energy on neutral donor ($D^{\circ}$, X), and the exciton binding energy on neutral acceptor ($A^{\circ}$, X) were 10 meV, 3.49 meV, and 7.17 meV respectively. From the value of activation energy of ($A^{\circ}$, X), we could show that the dissociation of ($A^{\circ}$, X) is attributed to free exciton.

  • PDF

Growth and characterization of CdTe single crystal by vertical Bridgman method (수직 Bridgman 법에 의한 CdTe 단결정 성장과 특성)

  • Hong, Myung-Seok;Hong, Kwang-Joon
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.369-373
    • /
    • 2005
  • High quality CdTe single crystal for the solar cell fabrication was grown by vertical Bridgman method. The etch pits patterns of (111) surfaces of CdTe etched by Nakagawa solution was observed the (111)A compesed of Cd atoms with typical triangle etch pits of pyramid mode. From the photoluminescence measurement on (111)A, we observed free exciton ($E_{x}$) existing only high quality crystal and neutal acceptor bound exciton ($A^{0}$,X) having very strong peak intensity. Then, the full width at half maximum and binding energy of neutral acceptor bound exciton were 7 meV and 5.9 meV, respectively. By Haynes rule, an activation enery of impurity was 59 meV. Therefore, the origins on impurity level acting as a neutral acceptor were associated Ag or Cu elements.

The Effect of Thermal Annealing and Growth of CdIn2Te4 Single Crystal by Bridgeman Method (Bridgeman 법에 의한 CdIn2Te4단결정 성장과 열처리 효과)

  • Hong, K.J.;Lee, S.Y.;Moon, J.D.
    • Korean Journal of Materials Research
    • /
    • v.13 no.3
    • /
    • pp.195-199
    • /
    • 2003
  • The $p-CdIn_2$$Te_4$single crystal was grown in the three-stage vertical electric furnace by using Bridgman method. The quality of the grown crystal has been investigated by the x-ray diffraction and the photoluminescence measurements. From the photoluminescence spectra of the as-grown $CdIn_2$$Te_4$crystal and the various heat-treated crystals, the ($D^{\circ}$, X) emission was found to be the dominant intensity in the photoluminescence spectrum of the $CdIn_2$T $e_4$:Cd, while the ($A^{\circ}$, X) emission completely disappeared in the $CdIn_2$T $e_4$:Cd. However, the ($A^{\circ}$, X) emission in the photoluminescence spectrum of the $CdIn_2$T $e_4$:Te was the dominant intensity like an as-grown $CdIn_2$T $e_4$crystal. These results indicated that the ($D^{\circ}$, X) is associated with $V_{Te}$ acted as donor and that the ($A^{\circ}$, X) emission is related to $V_{cd}$ acted as acceptor, respectively. The $p-CdIn_2$T $e_4$crystal was found to be obviously converted into the n-type after annealing in the Cd atmosphere. The origin of ( $D^{\circ}$, $A^{\circ}$) emission and its TO phonon replicas is related to the interaction between donors such as $V_{Te}$ or $Cd_{int}$, and accepters such as $V_{cd}$ or T $e_{int}$. Also, the In in the $CdIn_2$X$CdIn_4$was confirmed not to form the native defects because it existed in the stable form of bonds.

Photoluminescience properties for CdIn2Te4 single crystal grown by Bridgman method

  • Hong, Myung-Seok;Hong, Kwang-Joon;Kim, Jang-Bok
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.379-385
    • /
    • 2006
  • Single crystal of p-$CdIn_{2}Te_{4}$ was grown in a three-stage vertical electric furnace by using Bridgman method. The quality of the grown crystal has been investigated by x-ray diffraction and photoluminescence measurements. From the photoluminescence spectra of the as-grown $CdIn_{2}Te_{4}$ crystal and the various heat-treated crystals, the ($D^{o}$, X) emission was found to be the dominant intensity in the photoluminescence spectrum of the $CdIn_{2}Te_{4}$:Cd, while the ($A^{o}$, X) emission completely disappeared in the $CdIn_{2}Te_{4}$:Cd. However, the ($A^{o}$, X) emission in the photoluminescence spectrum of the $CdIn_{2}Te_{4}$:Te was the dominant intensity like in the as-grown $CdIn_{2}Te_{4}$ crystal. These results indicated that the ($D^{o}$, X) is associated with $V_{Te}$ which acted as donor and that the ($A^{o}$, X) emission is related to $V_{Cd}$ which acted as acceptor, respectively. The p-$CdIn_{2}Te_{4}$ crystal was obviously found to be converted into n-type after annealing in Cd atmosphere. The origin of ($D^{o},{\;}A^{o}$) emission and its to phonon replicas is related to the interaction between donors such as $V_{Te}$ or $Cd_{int}$, and acceptors such as $V_{Cd}$ or $Te_{int}$. Also, the In in the $CdIn_{2}Te_{4}$ was confirmed not to form the native defects because it existed in a stable bonding form.

Study on $CdIn_{2}Te_{4}$ single crystal growth and electrical characteristics ($CdIn_{2}Te_{4}$ 단결정 성장과 전기적 특성)

  • 홍광준
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.1
    • /
    • pp.32-43
    • /
    • 1996
  • A $CdIn_{2}Te_{4}$ single crystal was grown by modified veritical bridgman method. The $CdIn_{2}Te_{4}$ single crystal was evaluated to be tetragonal by the powder method. The $CdIn_{2}Te_{4}$ single crystal was confirmed to be grown with its c axis along the lengthe of the boule by the Laue reflection method. Hall effect of $CdIn_{2}Te_{4}$ single crystal was estimated by van der pauw method from 293 K to 30 K. Hall data of the sample perpendicular to c axis was $n=8.75{\times}10^{23}electrons/m^{3},\;R_{H}=7.14{\times}10^{-5}m^{3}/C,\;{\sigma}=176.40{\omega}^{-1}m^{-1},\;{$\mu}=3.41{\times}10^{-2}m^{2}/V.s$ and the sample parallel to c axis was $n=8.61{\times}10^{23}electrons/m^{3},\;R_{H}=7.26{\times}10^{-5}m^{3}/C,\;{\sigma}=333.38{\omega}^{-1}m^{-1}\;and\;{$\mu}=2.42{\times}10^{-2}m^{2}/V.s$ for room temperature. The value of Hall coefficient on sample perpendicular or parallel to c axis were positive. There $CdIn_{2}Te_{4}$ single crystal was p-type semiconductor.

  • PDF

Photoluminescience Properties and Growth of $CdIn_2Te_4$ Single crystal by Bridgman method (Bridgman법에 의해 $CdIn_2Te_4$ 단결정 성장과 광발광 특성)

  • Hong, K.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.278-281
    • /
    • 2003
  • The p-CIn2Te4 single crystal was grown in the three-stage vertical electric furnace by using Bridgman method. The quality of the grown crystal has been investigated by the x-ray diffraction and the photoluminescence measurements. From the photoluminescence spectra of the as-grown CdIn2Te4 crystal and the various heat-treated crystals, the (Do, X) emission was found to be the dominant intensity in the photoluminescence spectrum of the CdIn2Te4:Cd, while the (Ao, X) emission completely disappeared in the CdIn2Te4:Cd. However, the (Ao, X) emission in the photoluminescence spectrum of the CdIn2Te4:Te was the dominant intensity like an as-grown CdIn2Te4 crystal. These results indicated that the (Do, X) is associated with VTe acted as donor and that the (Ao, X) emission is related to VCd acted as acceptor, respectively. The p-CdIn2Te4 crystal was found to be obviously converted into the n-type after annealing in the Cd atmosphere. The origin of (Do, Ao) emission and its TO phonon replicas is related to the interaction between donors such as VTe or Cdint, and accepters such as VCd or Teint. Also, the In in the CdIn2Te4 was confirmed not to form the native defects because it existed in the stable form of bonds.

  • PDF