• 제목/요약/키워드: CdS nanoparticles

검색결과 36건 처리시간 0.026초

Cadmium Selenide Nanoparticles을 함유하는 액상실리콘 고무의 제조와 형광특성 (Preparation and Photoluminescence Characteristics of Liquid Silicone Rubber Containing Cadmium Selenide Nanoparticles)

  • 강두환;이병철;김지영
    • 폴리머
    • /
    • 제30권3호
    • /
    • pp.266-270
    • /
    • 2006
  • Poly [(dimethylmethylvinyl)siloxane 공중합체(PMViS)를 phosphorus oxychloride $(POCl_3)$와 반응시켜 poly [(dimethylmethylvinyl) siloxane] phosphine oxides (PMViSPO)를 제조하였다. Cadmium selenide (CdSe)는 cadmium oxide(CdO), tetradecylphosphonic acid(TDPA), trioctylphosphine oxide(TOPO)를 $300^{\circ}C$에서 반응시키고 여기에 Se를 용해시킨 tributylphosphine(TBP)과 trioctylphosphine(TOP)을 가한 다음 $320^{\circ}C$에서 반응시켜 제조하였다. 또한 CdSe 제조 용액에 PMViSPO를 가하여 CdSe-SPO adduct를 제조하였다. 백금 촉매 존재 하에서 $\alpha,\omega-vinyl$ poly(dimethylsiloxane) (VPMS), HPMS, CdSe 또는 CdSe-SPO를 고속 교반기에 취하고 컴파운딩하여 CdSe 함유 액상실리콘 고무 composite (LSRC-1)와 CdSe-SPO 함유 LSR composite (LSRC-2)를 제조하였다. 제조한 LSR composites 내에 함유된 형광 물질인 CdSe nanoparticles의 분산형태를 측정하여 입자 크기가 $30\sim50nm$인 입자가 균일하게 분포되어 있음을 확인하였고 LSRC-2의 분산도가 LSRC-1보다 우수함을 확인하였다. 또한 CdSe 입자의 개수를 측정한 결과 동일한 면적에 대하여 166개와 202개로 보다 많은 개수의 CdSe가 LSRC-2에 함유됨을 알 수 있었다. LSR composites의 열적 특성을 측정한 결과 CdSe-SPO가 함유된 LSRC-2의 열안정성이 높게 나타났다.

Low-temperature Synthesis of Graphene-CdLa2S4 Nanocomposite as Efficient Visible-light-active Photocatalysts

  • Zhu, Lei;Oh, Won-Chun
    • 한국세라믹학회지
    • /
    • 제52권3호
    • /
    • pp.173-179
    • /
    • 2015
  • We report the facile synthesis of graphene-$CdLa_2S_4$ composite through a facile solvothermal method at low temperature. The as-prepared products were characterized by X-ray diffraction (XRD) and by Scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis and BET analysis, revealing the uniform covering of the graphene nanosheet with $CdLa_2S_4$ nanocrystals. The as-prepared samples show a higher efficiency for the photocatalytic degradation of typical MB dye compared with P25 and $CdLa_2S_4$ bulk nanoparticles. The enhancement of visible-light-responsive photocatalytic properties by decolorization of Rh.B dye may be attributed to the following causes. Firstly, graphene nanosheet is capable of accepting, transporting and storing electrons, and thus retarding or hindering the recombination of the electrons with the holes remaining on the excited $CdLa_2S_4$ nanoparticles. Secondly, graphene nanosheet can increase the adsorption of pollutants. The final cause is that their extended light absorption range. This work not only offers a simple way to synthesize graphene-based composites via a one-step process at low temperature but also a path to obtain efficient functional materials for environmental purification and other applications.

CdS 나노입자틀 삽입한 Poly(2-Acetamidoacrylic acid) 수화젤 복합체의 열적 특성에 관한 연구 (Study on Thermal Properties of CdS - Embedded Poly(2-Acetamidoacrylic acid) Hydrogel Composite)

  • 박춘호;하은주;정종모;이장우;백현종
    • 폴리머
    • /
    • 제33권1호
    • /
    • pp.1-6
    • /
    • 2009
  • Poly(2-acetamidoacrylic acid) (PAAA) 수화젤 기판 내에 수용액상에서 이온교환에 의해 잘 분산된 CdS 나노입자를 응집이 없는 새로운 형태의 나노복합체로서 합성하였다. TEM 이미지분석을 통하여, CdS/PAAA 수화젤 복합체내에 분포되어 있는 CdS 나노입자의 평균 직경은 4.5 nm이며, 복합체의 형태는 6개월이 지나도 그대로 유지됨을 알았다. TGA와 EGA를 이용하여 복합재료의 열적 안정성이 약 100도 정도 상승하며, 건조젤 내의 CdS 입자의 함량이 70 wt% 이상이 됨을 확인할 수 있었으며 또한 각 온도에서 휘발 또는 분해된 기체를 통해 성분 물질을 확인하였다.

TiO2/CdS 복합광촉매의 밴드갭 에너지 특성과 광촉매 효율 (Photocatalytic Efficiency and Bandgap Property of the CdS Deposited TiO2 Photocatalysts)

  • 이종호;허수정;윤정일;김영직;서수정;오한준
    • 한국재료학회지
    • /
    • 제29권12호
    • /
    • pp.790-797
    • /
    • 2019
  • To improve photocatalytic performance, CdS nanoparticle deposited TiO2 nanotubular photocatalysts are synthesized. The TiO2 nanotube is fabricated by electrochemical anodization at a constant voltage of 60 V, and annealed at 500 for crystallization. The CdS nanoparticles on TiO2 nanotubes are synthesized by successive ionic layer adsorption and reaction method. The surface characteristics and photocurrent responses of TNT/CdS photocatalysts are investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-Vis spectrometer and LED light source installed potentiostat. The bandgaps of the CdS deposited TiO2 photocatalysts are gradually narrowed with increasing of amounts of deposited CdS nanoparticles, which enhances visible light absorption ability of composite photocatalysts. Enhanced photoelectrochemical performance is observed in the nanocomposite TiO2 photocatalyst. However, the maximum photocurrent response and dye degradation efficiency are observed for TNT/CdS30 photocatalyst. The excellent photocatalytic performance of TNT/CdS30 catalyst can be ascribed to the synergistic effects of its better absorption ability of visible light region and efficient charge transport process.

Highly Luminescent Multi-shell Structured InP Quantum Dot for White LEDs Application

  • 김경남;정소희
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.531-531
    • /
    • 2012
  • So many groups have been researching the green quantum dots such as InP, InP/ZnS for overcoming the semiconductor nanoparticles composed with heavy metals like as Cd and Pb so on. In spite of much effort to keep up CdSe quantum dots, it does not reach the good properties compared with CdSe/ZnS quantum dots. This quantum dot has improved its properties through the generation of core/shell CdSe/ZnS structure or core/multi-shell structures like as CdSe/CdS/ZnS and CdSe/CdS/ CdZnS/ZnS. In this research, we try to synthesize the InP multi-shell structure by the successiveion layer absorption reaction (SILAR) in the one pot. The synthesized multi-shell structure has improved quantum yield and photo-stability. To generate white light, highly luminescent InP multi-shell quantum dots were mixed with yellow phosphor and integrated on the blue LED chip. This InP multi-shell improved red region of the LEDs and generated high CRI.

  • PDF

CuInS2 나노 반도체 합성 및 표면 개질을 통한 광학적 효율 분석 연구 (Synthesis and Characterization of CuInS2 Semiconductor Nanoparticles and Evolution of Optical Properties via Surface Modification)

  • 양희승;김유진
    • 한국분말재료학회지
    • /
    • 제19권3호
    • /
    • pp.177-181
    • /
    • 2012
  • Copper composite materials have attracted wide attention for energy applications. Especially $CuInS_2$ has a desirable direct band gap of 1.5 eV, which is well matched with the solar spectrum. $CuInS_2$ nanoparticles could make it possible to develop color-tunable $CuInS_2$ nanoparticle emitter in the near-infrared region (NIR) for energy application and bio imaging sensors. In this paper, $CuInS_2$ nanoparticles were successfully synthesized by thermo-decomposition methods. Surface modification of $CuInS_2$ nanoparticles were carried out with various semiconductor materials (CdS, ZnS) for enhanced optical properties. Surface modification and silica coating of hydrophobic nanoparticles could be dispersed in polar solvent for potential applications. Their optical properties were characterized by UV-vis spectroscopy and photoluminescence spectroscopy (PL). The structures of silica coated $CuInS_2$ were observed by transmission electron microscopy (TEM).

Synthesis of CdxZn1-xS@MIL-101(Cr) Composite Catalysts for the Photodegradation of Methylene Blue

  • Yang, Shipeng;Peng, Siwei;Zhang, Chunhui;He, Xuwen;Cai, Yaqi
    • Nano
    • /
    • 제13권10호
    • /
    • pp.1850118.1-1850118.17
    • /
    • 2018
  • Nanoparticles of the semiconductor catalyst $Cd_xZn_{1-x}S$ were embedded into the metal organic framework MIL-101(Cr) to obtain $Cd_xZn_{1-x}S@MIL-101$(Cr) nanocomposites. These materials not only possess high surface areas and mesopores but also show good utilization of light energy. The ultraviolet-visible diffuse reflectance patterns of $Cd_xZn_{1-x}S@MIL-101$(Cr) nanocomposites showed that $Cd_{0.8}Zn_{0.2}S@MIL-101$(Cr) possessed good visible light response ability among the synthesized nanocomposites. The photocatalytic performance of the $Cd_xZn_{1-x}S@MIL-101$(Cr) nanocomposites were tested via degradation and mineralization of methylene blue in neutral water solution under light irradiation using a 300W xenon lamp. As a result, using $Cd_{0.8}Zn_{0.2}S@MIL-101$(Cr) as a catalyst, 99.2% of methylene blue was mineralized within 30 min. Due to the synergistic effect of adsorption by the MIL-101(Cr) component and photocatalytic degradation provided by the $Cd_{0.8}Zn_{0.2}S$ component, the $Cd_{0.8}Zn_{0.2}S@MIL-101$(Cr) catalyst displayed superior photocatalytic performance relative to $Cd_{0.8}Zn_{0.2}S$ and MIL-101(Cr). Furthermore, $Cd_{0.8}Zn_{0.2}S@MIL-101$(Cr) possessed excellent stability during photodegradation and exhibited good reusability. The remarkable photocatalytic performance of $Cd_{0.8}Zn_{0.2}S@MIL-101$(Cr) is likely due to the effective transfer of electrons and holes at the heterojunction interfaces.