DOI QR코드

DOI QR Code

Synthesis and Characterization of CuInS2 Semiconductor Nanoparticles and Evolution of Optical Properties via Surface Modification

CuInS2 나노 반도체 합성 및 표면 개질을 통한 광학적 효율 분석 연구

  • Yang, Hee-Seung (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Yoo-Jin (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
  • 양희승 (한국세라믹기술원 엔지니어링 세라믹센터) ;
  • 김유진 (한국세라믹기술원 엔지니어링 세라믹센터)
  • Received : 2012.01.26
  • Accepted : 2012.03.19
  • Published : 2012.06.28

Abstract

Copper composite materials have attracted wide attention for energy applications. Especially $CuInS_2$ has a desirable direct band gap of 1.5 eV, which is well matched with the solar spectrum. $CuInS_2$ nanoparticles could make it possible to develop color-tunable $CuInS_2$ nanoparticle emitter in the near-infrared region (NIR) for energy application and bio imaging sensors. In this paper, $CuInS_2$ nanoparticles were successfully synthesized by thermo-decomposition methods. Surface modification of $CuInS_2$ nanoparticles were carried out with various semiconductor materials (CdS, ZnS) for enhanced optical properties. Surface modification and silica coating of hydrophobic nanoparticles could be dispersed in polar solvent for potential applications. Their optical properties were characterized by UV-vis spectroscopy and photoluminescence spectroscopy (PL). The structures of silica coated $CuInS_2$ were observed by transmission electron microscopy (TEM).

Keywords

References

  1. L. Li, T. J. Daou, I, Texier, T. T. K. Chi, N. Q. Liem and P. Reiss: Chem. Mater., 21 (2009) 2422. https://doi.org/10.1021/cm900103b
  2. M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn and A. Dodabalapur, P. F. Barbara and B. A. Korgel: J. Am. Chem. Soc., 130 (2008) 16770. https://doi.org/10.1021/ja805845q
  3. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen and M. G. Bawendi: J. Phys. Chem. B, 101 (1997) 9463. https://doi.org/10.1021/jp971091y
  4. N. Pradhan, D. M. Battaglia, Y. Liu and X. G. Peng: Nano Lett., 7 (2007) 312. https://doi.org/10.1021/nl062336y
  5. P. M. Allen and M. G. Bawendi: J. Am. Chem. Soc., 130 (2008) 9240. https://doi.org/10.1021/ja8036349
  6. M. Kruszynska, H. Borcher, J. Parisi and J. Kolny-Olesiak: J. Am. Chem. Soc., 132 (2010) 15976. https://doi.org/10.1021/ja103828f
  7. D. K. Yi, S. T. Selvan, S. S. Lee, G. C. Papaefthymiou, D. Kundaliya and J.Y. Ying: J. Am. Chem. Soc., 127 (2005) 4990. https://doi.org/10.1021/ja0428863
  8. R. Xie, M. Rutherford and X. G. Peng: J. Am. Chem. Soc., 131 (2009) 5691. https://doi.org/10.1021/ja9005767
  9. A. M. Smith and S. Nie: Acc. Chem. Res., 43 (2010) 190. https://doi.org/10.1021/ar9001069
  10. J. Aldana, Y. A. Wang and X. G. Peng: J. Am. Chem. Soc., 123 (2001) 8844. https://doi.org/10.1021/ja016424q
  11. Y. Kim, J. H. Pee, Chang, K. Choi, K. Kim and D. Y. Jung: Chem. Lett., 8 (2009) 843.
  12. B. Zhang, X. Gong, L. Hao, J. Cheng, Y. Han and J. Chang: Nanotechnology, 19 (2008) 465604. https://doi.org/10.1088/0957-4484/19/46/465604
  13. J. C. Park, J. Kim, H. Kwon and H. Song: Adv. Mater., 21 (2009) 803. https://doi.org/10.1002/adma.200800596

Cited by

  1. /ZnS Semiconductor Nanocrystals vol.19, pp.5, 2012, https://doi.org/10.4150/KPMI.2012.19.5.362
  2. Surface Treatment Method for Long-term Stability of CdSe/ZnS Quantum Dots vol.24, pp.1, 2017, https://doi.org/10.4150/KPMI.2017.24.1.1