• Title/Summary/Keyword: Cd-doped ZnO

Search Result 21, Processing Time 0.028 seconds

Enhancing the Efficiency of Core/Shell Nanowire with Cu-Doped CdSe Quantum Dots Arrays as Electron Transport Layer (구리 이온 도핑된 카드뮴 셀레나이드 양자점 전자수송층을 갖는 나노와이어 광전변환소자의 효율 평가)

  • Lee, Jonghwan;Hwang, Sung Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.94-98
    • /
    • 2020
  • The core/shell of nanowires (NWs) with Cu-doped CdSe quantum dots were fabricated as an electron transport layer (ETL) for perovskite solar cells, based on ZnO/TiO2 arrays. We presented CdSe with Cu2+ dopants that were synthesized by a colloidal process. An improvement of the recombination barrier, due to shell supplementation with Cu-doped CdSe quantum dots. The enhanced cell steady state was attributable to TiO2 with Cu-doped CdSe QD supplementation. The mechanism of the recombination and electron transport in the perovskite solar cells becoming the basis of ZnO/TiO2 arrays was investigated to represent the merit of core/shell as an electron transport layer in effective devices.

Optical and structural properties of Al-doped CdZnO thin films with different Al concentrations (Al 도핑 농도에 따른 Al-doped Cd0.5Zn0.5O 박막의 광학적·구조적 특성)

  • Park, Hyeong-Gil;Nam, Gi-Ung;Yun, Hyeon-Sik;Kim, So-A-Ram;Kim, Min-Su;Im, Jae-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.245-246
    • /
    • 2012
  • Al 농도를 0 부터 2 at.% 까지 조절하여 도핑된 $Cd_{0.5}Zn_{0.5}O$ 박막을 석영 기판 위에 성장하였다. Al 도핑된 $Cd_{0.5}Zn_{0.5}O$ 박막의 구조적, 광학적 특성을 조사하기 위해 field-emission scanning electron microscopy, X-ray diffraction (XRD), photoluminescence (PL), 그리고 ultraviolet-visible (UV) spectroscopy을 사용하였다. 광학적 밴드갭은 Al 도핑 농도가 증가함에 따라 2.874 (0 at.%), 2.874 (0.5 at.%), 3.029 (1.0 at.%), 3.038 (1.5 at.%), 3.081 eV (2.0 at.%)로 증가하였다. Urbach energy는 도핑 농도에 따라 각각 464 (0 at.%), 585 (0.5 at.%), 571 (1.0 at.%), 600 (1.5 at.%), 470 meV (2.0 at.%)이었다. 또한, Al 농도가 증가함에 따라 $Cd_{0.5}Zn_{0.5}O$ 박막의 표면, 구조적 및 광학적 특성이 크게 변화되었다.

  • PDF

Fabrication of ZnO Nanorod-based Electrochemical Luminescence Cells and Fundamental Luminescence Properties (산화아연 나노로드 전극을 이용한 전기화학발광 셀의 제작 및 발광특성 고찰)

  • Oh, Hyung-Suk;Sung, Youl-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.76-79
    • /
    • 2014
  • We report Zinc oxide (ZnO) nanorods synthesis and electrochemical luminescence (ECL) cell fabrication. The ECL cell was fabricated using the electrode of ZnO nanorods and Ru(II) complex ($Ru(bpy)_3{^{2+}}$) as a luminescence materials. The fabricated ECL cell is composed of F-doped $SnO_2$ (FTO) glass/ Ru(II)/ZnO nanorods/FTO glass. The highest intensity of the emitting light was obtained at the wavelength of ~620 nm which corresponds to dark-orange color. At a bias voltage of 3V, the measured ECL efficiencies were 5 $cd/m^2$ for cell without ZnO nanorod, 145 $cd/m^2$ for ZnO nanorods-$5{\mu}m$, 208 $cd/m^2$ for ZnO nanorods-$8{\mu}m$ and 275 $cd/m^2$ for ZnO nanorods-$10{\mu}m$, respectively. At a bias voltage of 3.5V, the use of ZnO nanorods increases ECL intensities by about 3 times compared to the typical ECL cell without the use of ZnO nanorods.

Efficient Quantum Dot Light-emitting Diodes with Zn0.85Mg0.15O Thin Film Deposited by RF Sputtering Method (RF Sputtering 방법으로 증착된 Zn0.85Mg0.15O 박막을 적용한 고효율 양자점 전계 발광 소자 연구)

  • Kim, Bomi;Kim, Jiwan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.4
    • /
    • pp.49-53
    • /
    • 2022
  • In this study, quantum dot light-emitting diodes (QLEDs) of the optimized EL performance with a radio frequency (RF) sputtered Zn0.85Mg0.15O thin film as an electron transport layer (ETL). In typical QLEDs, ZnO nanoparticles (NPs) are widely used materials for ETL layer due to their advantages of high electron mobility, suitable energy level and easy capable of solution processing. However, the instability problem of solution-type ZnO NPs has not yet been resolved. To solve this problem, ZnMgO thin film doped with 15% Mg of ZnO was fabricated by RF sputtering and optimized for the device applied as an ETL. The QLEDs of optimized ZnMgO thin film exhibited a maximum luminance of 15,972 cd/m2 and a current efficiency of 7.9 cd/A. Efficient QLEDs using sputtering ZnMgO thin film show the promising results for the future display technology.

CdSe Quantum Dot based Transparent Light-emitting Device using Silver Nanowire/Ga-doped ZnO Composite Electrode (AgNWs/Ga-doped ZnO 복합전극 적용 CdSe양자점 기반 투명발광소자)

  • Park, Jehong;Kim, Hyojun;Kang, Hyeonwoo;Kim, Jongsu;Jeong, Yongseok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.6-10
    • /
    • 2020
  • The silver nanowires (AgNWs) were synthesized by the conventional polyol process, which revealed 25 ㎛ and 30 nm of average length and diameter, respectively. The synthesized AgNWs were applied to the CdSe/CdZnS quantum dot (QD) based transparent light-emitting device (LED). The device using a randomly networked AgNWs electrode had some problems such as the high threshold voltage (for operating the device) due to the random pores from the networked AgNWs. As a method of improvement, a composite electrode was formed by overlaying the ZnO:Ga on the AgNWs network. The device used the composite electrode revealed a low threshold voltage (4.4 Vth) and high current density compared to the AgNWs only electrode device. The brightness and current density of the device using composite electrode were 55.57 cd/㎡ and 41.54 mA/㎠ at the operating voltage of 12.8 V, respectively, while the brightness and current density of the device using (single) AgNWs only were 1.71 cd/㎡ and 2.05 mA/㎠ at the same operating voltage. The transmittance of the device revealed 65 % in a range of visible light. Besides the reliability of the devices was confirmed that the device using the composite electrode revealed 2 times longer lifetime than that of the AgNWs only electrode device.

Photocatalytic study of Zinc Oxide with bismuth doping prepared by spray pyrolysis

  • Lin, Tzu-Yang;Hsu, Yu-Ting;Lan, Wen-How;Huang, Chien-Jung;Chen, Lung-Chien;Huang, Yu-Hsuan;Lin, Jia-Ching;Chang, Kuo-Jen;Lin, Wen-Jen;Huang, Kai-Feng
    • Advances in nano research
    • /
    • v.3 no.3
    • /
    • pp.123-131
    • /
    • 2015
  • The unintentionally doped and bismuth (Bi) doped zinc oxide (ZnO) films were prepared by spray pyrolysis at $450^{\circ}C$ with zinc acetate and bismuth nitrate precursor. The n-type conduction with concentration $6.13{\times}10^{16}cm^{-3}$ can be observed for the unintentionally doped ZnO. With the increasing of bismuth nitrate concentration in precursor, the p-type conduction can be observed. The p-type concentration $4.44{\times}10^{17}cm^{-3}$ can be achieved for the film with the Bi/Zn atomic ratio 5% in the precursor. The photoluminescence spectroscopy with HeCd laser light source was studied for films with different Bi doping. The photocatalytic activity for the unintentionally doped and Bi-doped ZnO films was studied through the photodegradation of Congo red under UV light illumination. The effects of different Bi contents on photocatalytic activity are studied and discussed. Results show that appropriate Bi doping in ZnO can increase photocatalytic activity.

Effect of Luminescence with Coactivator of $ZnGa_2O_4$:Mn,X phosphor ($ZnGa_2O_4$:Mn,X 형광체의 부활성제에 따른 발광 효과)

  • 박용규;한정인;주성후
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.3
    • /
    • pp.242-247
    • /
    • 1998
  • In this study, we have synthesized $ZnGa_2O_4$:Mn,X powder doped with Mn, MnO, $MnF_2$ and $MnCl_2$, low voltage green emitting phosphor, in vacuum atmosphere. From PL spectra, the intensity of the emission peak, the brightness with coactivator show that $ZnGa_2O_4$:Mn,Cl > $ZnGa_2O_4$:Mn,F > $ZnGa_2O_4$:Mn,O > $ZnGa_2O_4$:Mn. These improvement of the brightness are caused by the increase of the concentration of $Mn^{2+}$ ion. In case of $ZnGa_2O_4$:Mn,Cl and ZnGa$_2$O$_4$:Mn,F, the brightness is enhanced much more, which is owed to the decrease of defect of host material. For $ZnGa_2O_4$:Mn,Cl phosphor fabricated with optimized condition, the decay time becomes short from 30 ms of the $ZnGa_2O_4$:Mn and $ZnGa_2O_4$:Mn,O to 6 ms and the brightness of CL at 1 kV, 1 mA is 60 cd/$m^2$.

  • PDF

Electrical Properties of ITO and ZnO:Al Thin Films and Brightness Characteristics of PDP Cell with ITO and ZnO:Al Transparent Electrodes (ITO와 ZnO:Al 투명전도막의 전기적 특성 및 PDP 셀의 휘도 특성)

  • Kwak, Dong-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.7
    • /
    • pp.6-13
    • /
    • 2006
  • Tin doped indium oxide(ITO) and Al doped zinc oxide(ZnO:Al) films, which are widely used as a transparent conductor in optoelectronic devices, were prepared by using the capacitively coupled DC magnetron sputtering method. ITO and ZnO:Al films with the optimum growth conditions showed each resistivity of $1.67{\times}10^{-3}[{\Omega}-cm],\;2.2{\times}10^{-3}[{\Omega}-cm]$ and transmittance of 89.61[%], 90.88[%] in the wavelength range of the visible spectrum. The two types of 5 inch-PDP cells with ZnO:Al and ITO transparent electrodes were made under the same manufacturing conditions. The PDP cell with ZnO:Al film was optimally operated in the mixing gas rate of Ne(base)-Xe(8[%]), and at gas pressure of 400[Torr]. It also shows the average measured brightness of $836[cd/m^2]$ at voltage range of $200{\sim}300$[V]. Luminous efficiency, one of the key parameter for high brightness and low power consumption, ranges from 1.2 to 1.6[lm/W] with increasing frequency of ac power supplier from 10 to 50[Khz]. The brightness and luminous efficiency are lower than those with ITO electrode by about 10[%]. However, these values are considered to be enough for the normal operation of PDP TV.

TOF-MEIS System을 이용한 Ultra Thin Film 및 Composition and the Core/Shell Structure of Quantum Dot 분석

  • Jeong, Gang-Won;Kim, Jae-Yeong;Mun, Dae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.284-284
    • /
    • 2013
  • 중 에너지 이온 산란 분석법(Medium Energy Ion Scattering Spectrometer, MEIS)은 50~500 keV로 이온을 가속 후 시료에 입사시켜 시료의 원자와 핵간 충돌로 산란되는 일차이온의 에너지를 측정하여 시료를 분석하는 기법으로, 원자층의 깊이 분해능으로 초박막의 표면 계면의 조성과 구조를 분석 할수 있는 유용한 미세 분석기술이다. 본 실험에서 에너지 70~100 keV의 He+ 이온을 사용하여 Pulse Width 1 ns의 Pulsed ion beam을 만들어 Start 신호로 사용하고 Delay-line-detector에 검출된 신호를 End 신호를 이용한 TOF-MEIS System을 개발하였다. 활용 가능한 분석시편으로 Ultra thin film 시편으로 1, 1.5, 2, 2.5, 3, 4 nm의 HfO2, 1.8, 4nm의 SiO2 시편을 분석 하였으며 Ultra Shallow Junction 시편으로 As Doped Si, Cs Doped Si 시편 및 Composition, Core/shell 구조의 Q-dot 시편으로 CdSe, CdSe/ZnS등 다양한 분석 실험을 진행 하였다. Composition, Core/shell 구조의 Q-dot 시편은 Diamond Like Carbon(DLC)의 Substrate에 Mono-layer로 형성하여 분석하였다.

  • PDF