• 제목/요약/키워드: Cavity Perturbation method

검색결과 12건 처리시간 0.028초

Cavity Perturbation Method를 이용한 마이크로파 주파수대의 고온 유전특성 측정 연구 (Measurement of High Temperature Dielectric Property at Microwave Frequency Using Cavity Perturbation Method)

  • 김동은;정진호;이성민;김형태
    • 한국분말재료학회지
    • /
    • 제13권6호
    • /
    • pp.455-461
    • /
    • 2006
  • High temperature dielectric constants of the various ceramic materials have been measured using cavity perturbation method. The measurements were applied to refractory, traditional and fine ceramic powder compacts from room temperature to $1200^{\circ}C$. Calibration constant in the equation suggested by Hutcheon et al., was determined from the dielectric constants of reference specimen (teflon and alumina) at room temperature. From these results, informations on the refectory materials were obtained for the microwave kiln design and understanding of the microwave heating effects of ceramics have been improved.

공진기 섭동방법을 이용한 마이크로파 페라이트의 복소 유전율과 선폭 측정 (Complex Permittivity and Linewidth Measurements of Microwave Ferrites Using the Cavity Perturbation Method)

  • 엄동진;오호석;박동철;윤상원
    • 전자공학회논문지A
    • /
    • 제30A권4호
    • /
    • pp.11-19
    • /
    • 1993
  • The complex permittivity and the linewidth of microwave ferrites are measured using the well known cavity perturbation method. The cavity perturbation method has been widely used for the measurement of complex permittivity and conductivity of low loss magnetic and dielectric materials at microwave frequencies. TT1-2000, TT73-2200, and G-113 samples ordered from Trans-Tech Inc, are tested. TE$_{103}$ and TE$_{106}$ rectangular waveguide cavities are fabricated and the ferrite sample of cylidrical rod and sphere shapes are prepared. The error between the measurement values and the supplier's data is less than 1 percent in case of $\varepsilon$’ and about 10 percent in case of linewidth ($\Delta$H). Worst case error analysis shows that our measured results are well within the error bound calculated from the accuracy specification of the measuring instruments.

  • PDF

Rotordynamic Analysis for Stepped-Labyrinth Gas Seals Using Moodys Friction-Factor Model

  • Ha, Tae-Woong
    • Journal of Mechanical Science and Technology
    • /
    • 제15권9호
    • /
    • pp.1217-1225
    • /
    • 2001
  • The governing equations are derived for the analysis of a stepped labyrinth gas seal generally used in high performance compressors, gas turbines, and steam turbines. The bulk-flow is assumed for a single cavity control volume set up in a stepped labyrinth cavity and the flow is assumed to be completely turbulent in the circumferential direction. The Moodys wall-friction-factor model is used for the calculation of wall shear stresses in the single cavity control volume. For the reaction force developed by the stepped labyrinth gas seal, linearized zeroth-order and first-order perturbation equations are developed for small motion about a centered position. Integration of the resultant first-order pressure distribution along and around the seal defines the rotordynamic coefficients of the stepped labyrinth gas seal. The resulting leakage and rotordynamic characteristics of the stepped labyrinth gas seal are presented and compared with Scharrers theoretical analysis using Blasius wall-friction-factor model. The present analysis shows a good qualitative agreement of leakage characteristics with Scharrers analysis, but underpredicts by about 20%. For the rotordynamic coefficients, the present analysis generally yields smaller predictied values compared with Scharrers analysis.

  • PDF

기지국용 ZST세라믹스의 소결조건에 따른 고주파 유전 특성 (Microwave Dielectric Properties of ZST Ceramics for Mobile Telecommunication System)

  • 서정철;이희영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.636-639
    • /
    • 2000
  • Effects of sintering temperature and time on relative permittivity $\varepsilon$$\_$r/, unloaded quality factor Q$.$f and temperature coefficient of resonant frequency $\tau$$\_$f/ of dielectric resonator materials produced from commercial ZST powder were investigated in some detail. Q$.$f values, as determined from cavity perturbation method at 1.6 GHz, gradually increased with sintering temperature reaching the maximum at 1420$^{\circ}C$. However, bulk density and relative permittivity values, which increased with temperature, started to decrease above 1380$^{\circ}C$. In addition, Q$.$f values slightly increased with sintering time at the sintering temperature of 1300$^{\circ}C$∼1380$^{\circ}C$, while bulk density and relative permittivity values were approximately constant. It was also found that $\tau$$\_$f/ values were not affected by sintering temperature and time within the experimental conditions used.

  • PDF

원통형 공진기를 이용한 마이크로파 대역에서 그을음의 도전율 측정 (Conductivity Measurement of Soot at Microwave Frequency Using a Cylindrical Cavity)

  • 김재희;박위상
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.341-342
    • /
    • 2008
  • A conductivity of soot at microwave frequency is presented using a novel technique for complex permittivity of materials. The method overcomes limitations of conventional methods which are cavity perturbation and transmission/reflection method. Resonant frequencies and Q factors are measured and simulated for the cylindrical cavity, and they are compared to each other. Similar material property of both real material and simulation material produce similar values of resonant frequency and Q factor. The complex permittivity of material can be determined by simulating the cavity to change material property until the simulation results are nearly the same as the measurement results. Cylindrical cavity has been realized for measurement at 880 MHz, and conductivity of soot is measured. A sample was made by depositing the soot on the glass. The proposed method shows that the conductivity of soot is 11 S/m.

  • PDF

Ca-Zr치환 YIG의 유효 선폭 측정 (Measurement of Effective Linewidth for Ca-Zr Substituted YIG)

  • 김약연;한진우;한기평;김덕준;이상석;최태구
    • 한국자기학회지
    • /
    • 제10권1호
    • /
    • pp.22-29
    • /
    • 2000
  • Ca-Zr이 치환된 YIG산화물 자성체의 유효 선폭이 마이코로파 진동수 9.43 GHz에서 공동공진기의 섭동법에 의해 측정되었다. 실험장치는 network analyzer, 전자석, 공동 공진기로 구성되었으며, 시편이 삽입된 공진기에서 정자기장의 변화에 따른 공명진동수와 품질인자의 측정치로부터 계산된 마이크로파 자기감수율 텐서의 대각성분에 의해 분석되었다. 유효 선폭은 균일 모드와 스핀파가 축퇴되는 영역에서 급격한 손실을 보이며, 축퇴영역 밖에서도 비교적 큰 손실을 보이고 있다.

  • PDF

Frequency and Length Adjustment of A PEFP Low-Beta Dumbbell

  • Changyi, Gao;An, Sun;Liping, Zhang;Yazhe, Tang;Yingmin, Li;Kim, Han-Sung;Cho, Yong-Sub
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제10권2호
    • /
    • pp.27-29
    • /
    • 2008
  • Superconducting RF cavities are being considered for accelerating a proton beam at 700 MHz in the linac of the Proton Engineering Frontier Project (PEFP) and its post-project. Dumbbell fabrication is a mid-process for manufacturing an elliptical superconducting RF cavity. During the dumbbell fabrication, control of the dumbbell length and the $TM010\;{\pi}$ mode frequencies is necessary to build up a desired cavity. A new formula with a perturbation measurement method is used to measure and calculate the frequencies of the individual half-cells of a PEFP low-beta dumbbell, and to tune the frequency and length of the half-cells. In this article, the tuning method and results of the PEFP low-beta dumbbells have been presented.

평행평판 도파관에서 너비 방향으로 발생하는 고차 모드에 관한 연구 (An Investigation of Higher Order Modes in Widthwise in Parallel Plate Waveguide)

  • 조규영;조현동;박위상
    • 한국전자파학회논문지
    • /
    • 제23권6호
    • /
    • pp.731-739
    • /
    • 2012
  • 일반적으로 평행평판 도파관에서 발생하는 가장 낮은 고차 모드는 $TE_1$ 모드와 $TM_1$ 모드로 알려져 있다. 본 논문에서는 평행평판 도파관에서 이보다 더 낮은 주파수에서 발생하는 TE 모드에 대해 고찰한다. 평행평판 도파관의 열려 있는 양 옆을 완전 자성 도체(PMC)로 가정하여 TE 모드의 전자계 분포를 유도하였고, 이 모드의 존재를 평행평판 도파관 공동기를 제작하여 실험함으로써 실증하였다. 열려 있는 양 옆의 경계가 완전한 자성 도체가 아니므로 인해 나타나는 특성에 대해서도 고찰하였다.

확률유한요소법을 이용한 초고주파 수동소자의 2차원 해석 (The Two Dimensional Analysis of RF Passive Device using Stochastic Finite Element Method)

  • 김준연;정철용;이선영;천창렬
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권4호
    • /
    • pp.249-257
    • /
    • 2000
  • In this paper, we propose the use of stochastic finite element method, that is popularly employed in mechanical structure analysis, for more practical designing purpose of RF device. The proposed method is formulated based on the vector finite element method cooperated by pertubation analysis. The method utilizes sensitivity analysis algorithm with covariance matrix of the random variables that represent for uncertain physical quantities such as length or various electrical constants to compute the probabilities of the measure of performance of the structure. For this computation one need to know the variance and covariance of the random variables that might be determined by practical experiences. The presenting algorithm has been verified by analyzing several device with different be determined by practical experiences. The presenting algorithm has been verified by analysis several device with different measure of performanes. For the convenience of formulation, two dimensional analysis has been performed to apply it into waveguide with dielectric slab. In the problem the dielectric constant of the dielectric slab is considered as random variable. Another example is matched waveguide and cavity problem. In the problem, the dimension of them are assumed to be as random variables and the expectations and variances of quality factor have been computed.

  • PDF

Hybridal Method for the Prediction of Wave Instabilities Inherent in High Energy-Density Combustors (1): Modeling of Nonlinear Cavity Acoustics and its Evolution

  • Lee, Gil-Yong;Yoon, Woong-Sup
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권2호
    • /
    • pp.26-32
    • /
    • 2006
  • This paper targets a direct and quantitative prediction of characteristics of unstable waves in a combustion chamber, which employs the governing equations derived in terms of amplification factors of flow variables. A freshly formulated nonlinear acoustic equation is obtained and the analysis of unsteady waves in a rocket engine is attempted. In the present formalism, perturbation method decomposes the variables into time-averaged part that can be obtained easily and accurately and time-varying part which is assumed to be harmonic. Excluding the use of conventional spatially sinusoidal eigenfunctions, a direct numerical solution of wave equation replaces the initial spatial distribution of standing waves and forms the nonlinear space-averaged terms. Amplification factor is also calculated independently by the time rate of changes of fluctuating variables, and is no longer an explicit function for compulsory representation. Employing only the numerical computation, major assumptions inevitably inherent, and in erroneous manner, in up to date analytical methods could be avoided. With two definitions of amplification factor, 1-D stable wave and 3-D unstable wave are examined, and clearly demonstrated the potentiality of a suggested theoretical-numerical method of combustion instability.