• Title/Summary/Keyword: Cavitation Flow

Search Result 542, Processing Time 0.023 seconds

Study on Dynamics Modeling and Depth Control for a Supercavitating Underwater Vehicle in Transition Phase (초공동 수중운동체의 천이구간 특성을 고려한 동역학 모델링 및 심도제어 연구)

  • Kim, Seon Hong;Kim, Nakwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.1
    • /
    • pp.88-98
    • /
    • 2014
  • A supercavitation is modern technology that can be used to reduce the frictional resistance of the underwater vehicle. In the process of reaching the supercavity condition which cavity envelops whole vehicle body, a vehicle passes through transition phase from fully-wetted to supercaviting operation. During this phase of flight, unsteady hydrodynamic forces and moments are created by partial cavity. In this paper, analytical and numerical investigations into the dynamics of supercavitating vehicle in transition phase are presented. The ventilated cavity model is used to lead rapid supercavity condition, when the cavitation number is relatively high. Immersion depth of fins and body, which is decided by the cavity profile, is calculated to determine hydrodynamical effects on the body. Additionally, the frictional drag reduction associated by the downstream flow is considered. Numerical simulation for depth tracking control is performed to verify modeling quality using PID controller. Depth command is transformed to attitude control using double loop control structure.

Experimental Study on Supercavitated Body with Static Angle-of-attack (정적 받음각을 갖는 초공동화 수중체에 대한 실험적 연구)

  • Lee, Jun-Hee;Paik, Bu-Geun;Kim, Kyoung-Youl;Kim, Min-Jae;Kim, Seonhong;Lee, Seung-Jae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.6
    • /
    • pp.541-549
    • /
    • 2019
  • In the present study, we investigated planing forces of supercavitated bodies by using the supercavitation shape produced by the disk type cavitator. The cavity shapes are observed to find the immersion draft and planing angle when the stern of the supercavitated body is partially immersed in the water. To make the planing the angle-of-attack (AOA) of the supercavitated body is varied statically against the main flow and the planing tests are carried out for different body shapes that are changed systematically. The drag, lift and pitch moment acting on the body are measured to understand the relation between the planing force and the immersion draft of the supercavitated body. It is found that the planing force increased in general linearly with the immersion draft ratio and the planing angle is certainly not proportional to the immersion draft ratio.

A PIV Study on Loss Reduction for Tilting Disk Check Valve Installed in Piping System of Water Supply by PIV (PIV에 의한 상수도 배관용 틸팅디스크 체크 밸브의 손실저감에 관한 연구)

  • Kim, B.S.;Kim, J.H.;Lee, J.Y.;Kim, J.G.;Lee, Y.H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.577-582
    • /
    • 2003
  • In generally, under the influence of over-pressure drop, serious problems such as cavitation, choked flow, flashing and vibration has been coming around the tilting disk check valve. A PIV experiment to examine the cause of energy loss has been performed and the improvement configuration of valve seat based on this visualization results is proposed. In the visualization results, flows in the piping system became instability under the influence of the shape of boss. This unstable flows induces sudden pressure drop in the piping system. So, we change the configuration of boss as a streamlined design to be stabilized the flows. A pressure measurement has been performed to know that the influence of the configuration change. In result, the rate of pressure loss reduction is about 22% at the position of No. 2 and 24.2% at the position of No. 6 in comparison with pre-improved shape.

  • PDF

Thermal Spray Coating Layer for Improvement of Erosion and Corrosion Resistance Applicable to Large Sized High Speed Ship's Rudder (대형 고속 선박용 러더의 내침식, 부식 특성 향상을 위한 용사 코팅막)

  • Lee, Yu-Song;Heo, Seong-Hyeon;Kim, Jin-Hong;Kim, Yeo-Jung;Bae, Il-Yong;Lee, Myeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.196-197
    • /
    • 2011
  • Rudder, one of the most important component in the marine vessel, is now being decreased life time to serve due to cavitation erosion, vortex current, high flow speed suffer from ship speed going up dramatically. In this study, 10 kinds of thermal spray coating materials(2 of Zn alloy series, 3 of Al alloy series, 3 of Cu alloy series, 2 of STS alloy series) are chosen to apply on specimens and analyze micro structure, metallic composition, properties(porosity, oxidation) by using visual observation, XRD, EDX etc.. Additionally, to refine the characteristic of corrosion endurance for thermal spray coating layer, compared with thermal spray process and 5 kinds of heavy duty painting and AC paint (Anti-Corrosion Paint). Based on above mentioned experimental results, a priority of all coated specimens on corrosion-erosion endurances finalized and summarized there by desirable composition and process of thermal sprayed material properly.

  • PDF

Performance of water-jet pump under acceleration

  • Wu, Xian-Fang;Li, Ming-Hui;Liu, Hou-Lin;Tan, Ming-Gao;Lu, You-Dong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.794-803
    • /
    • 2021
  • The instantaneous acceleration affects the performance of the water-jet pump obviously. Here, based on the user-defined function, the method to simulate the inner flow in water-jet pumps under acceleration conditions was established. The effects of two different acceleration modes (linear acceleration and exponential acceleration) and three kinds of different acceleration time (0.5s, 1s and 2s) on the performance of the water-jet pump were analyzed. The results show that the thrust and the pressure pulsation under exponential acceleration are lower than that under linear acceleration at the same time; the vapor volume fraction in the impeller under linear acceleration is 27.3% higher than that under exponential acceleration. As the acceleration time increases, the thrust gradually increases and the pressure pulsation amplitude at the impeller inlet and outlet gradually decreases, while the law of pressure pulsation is the opposite at the diffuser outlet. The main frequency of pressure pulsation at the impeller outlet is different under different acceleration time. The research results can provide some reference for the optimal design of water-jet pumps.

Numerical investigation of water-entry characteristics of high-speed parallel projectiles

  • Lu, Lin;Wang, Chen;Li, Qiang;Sahoo, Prasanta K.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.450-465
    • /
    • 2021
  • In this study, an attempt has been made to investigate the water-entry characteristics of the high-speed parallel projectile numerically. The shear stress transport k-𝜔 turbulence model and the Zwart-Gerber-Belamri cavitation model based on the Reynolds-Averaged Navier-Stokes method were used. The grid independent inspection and grid convergence index is carried out and verified. The influences of the parallel water-entry on flow filed characteristics, trajectory stability and drag reduction performance for different values of initial water-entry speed (𝜈0 = 280 m/s, 340 m/s, 400 m/s) and clearance between the parallel projectiles (Lp = 0.5D, 1.0D, 2.0D, 3.0D) are presented and analyzed in detail. Under the condition of the parallel water-entry, it can be found that due to the intense interference between the parallel projectiles, the distribution of cavity is non-uniform and part of the projectile is exposed to water, resulting in the destruction of the cavity structure and the decline of trajectory stability. In addition, the parallel projectile suffers more severe lateral force that separates the two projectiles. The drag reduction performance is impacted and the velocity attenuation is accelerated as the clearance between the parallel projectiles reduces.

Technology Based on Wall-Thinning Prediction and Numerical Analysis Techniques for Wall-Thinning Analysis of Small-Bore Carbon Steel Piping (감육예측 및 수치해석 기법을 활용한 소구경 탄소강배관 감육영향 분석에 관한 연구)

  • Lee, Dae-Young;Hwang, Kyeong-Mo;Jin, Tae-Eun;Park, Won;Oh, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.429-435
    • /
    • 2010
  • In approximately fifty utilities, including KHNP (Korea Hydro & Nuclear Power), CHECWORKS is used as a tool for predicting and managing the wall thinning of carbon steel piping; this wall thinning is caused by flow-accelerated corrosion (FAC). It is known that CHECWORKS is only applicable to predict the wall thinning of piping with large bores. When dealing with small-bore steel piping, FAC engineers measure the thickness of the susceptible area that is selected on the basis of the experience and judgment of the engineer. This paper proposes the application of CHECWORKS for the management of wall thinning of small-bore piping. Four small-bore pipelines of a domestic nuclear power plant were analyzed from the viewpoints of FAC and fluid dynamics by using CHECWORKS and FLUENT code. Depending on the engineer's skill, CHECWORKS can also be used for the management of wall thinning of small-bore piping.

Study on the Drag Performance of the Flat Plates Treated by Antifouling Paints (방오 도료가 도장된 평판에 대한 항력 성능 연구)

  • Paik, Bu-Geun;Kim, Kyung-Youl;Cho, Seong-Rak;Ahn, Jong-Woo;Cho, Sang-Rae;Kim, Kyung-Rae;Chung, Young-Uok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.6
    • /
    • pp.399-406
    • /
    • 2013
  • In the present study, the flat plate model test method is developed to evaluate the skin friction of the marine coating in the cavitation tunnel. Six-component force balance is used to measure the profile drag of the flat plate and strut. LDV(laser Doppler velocimetry) technique is also employed to evaluate the drag and to figure out the reason of the drag reduction. The flow velocities above the surface can be used to assess the skin friction, combined with direct force measurement. Since the vortical structure in the coherent turbulence structure influences on the skin friction in the high Reynolds number regime, the interaction between the turbulence structure and the surface wall is paying more attention. This sort of thing is important in the passive control of the turbulent boundary layer because the skin friction can't be determined only by wall condition. As complicated flow phenomena exist around a paint film, systematic measurement and analysis are necessary to evaluate the skin friction appropriately.

THINNED PIPE MANAGEMENT PROGRAM OF KOREAN NUCLEAR POWER PLANTS

  • Lee, S.H.;Lee, Y.S.;Park, S.K.;Lee, J.G.
    • Corrosion Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Local wall thinning and integrity degradation caused by several mechanisms, such as flow accelerated corrosion (FAC), cavitation, flashing and/or liquid drop impingements, are a main concern in carbon steel piping systems of nuclear power plant in terms of safety and operability. Thinned pipe management program (TPMP) had been developed and optimized to reduce the possibility of unplanned shutdown and/or power reduction due to pipe failure caused by wall thinning in the secondary side piping system. This program also consists of several technical elements such as prediction of wear rate for each component, prioritization of components for inspection, thickness measurement, calculation of actual wear and wear rate for each component. Decision making is associated with replacement or continuous service for thinned pipe components. Establishment of long-term strategy based on diagnosis of plant condition regarding overall wall thinning is also essential part of the program. Prediction models of wall thinning caused by FAC had been established for 24 operating nuclear plants. Long term strategies to manage the thinned pipe component were prepared and applied to each unit, which was reflecting plant specific design, operation, and inspection history, so that the structural integrity of piping system can be maintained. An alternative integrity assessment criterion and a computer program for thinned piping items were developed for the first time in the world, which was directly applicable to the secondary piping system of nuclear power plant. The thinned pipe management program is applied to all domestic nuclear power plants as a standard procedure form so that it contributes to preventing an accident caused by FAC.

A Study on Drag Reduction of Cylindrical Underwater Body Using Sintered Mesh (소결 메쉬를 이용한 원통형 수중운동체 항력 감소 연구)

  • Jung, Chulmin;Paik, Bugeun;Kim, Kyungyoul;Jung, Youngrae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.195-203
    • /
    • 2018
  • Among the techniques of reducing the drag to increase the speed of underwater moving bodies, we studied on the drag reduction method by gas injection. Researches on gas injection method have been paid much attention to reduce the drag of vessels or pipe inner walls. In this study, we used a sintered metal mesh that can uniformly distribute fine bubbles by gas injection method, and applied it to a cylindrical underwater moving body. Using the KRISO medium-sized cavitation tunnel, we measured both the bubble size on the surface of the sintered mesh and the bubble distribution in the boundary layer. Then, drag reduction tests were performed on the cylinder type underwater moving models with cylindrical or round type tail shape. Experiments were carried out based on the presence or absence of tail jet injection. In the experiments, we changed the gas injection amount using the sintered mesh gas injector, and changed flow rate accordingly. As a result of the test, we observed increased bubbles around the body and confirmed the drag reduction as air injection flow rate increased.