• 제목/요약/키워드: Cavitation Bubble

검색결과 92건 처리시간 0.028초

A new cavitation model considering inter-bubble action

  • Shi, Yazhen;Luo, Kai;Chen, Xiaopeng;Li, Daijin;Jia, Laibing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.566-574
    • /
    • 2021
  • The process of cavitation involves generation, growth, coalescence, and collapse of small bubbles and is tremendously influenced by bubble-bubble interactions. To understand these interactions, a new cavitation model based on the transport equation is proposed herein. The modified Rayleigh-Plesset equation is analyzed to determine the bubble growth rate by assuming equal-sized spherical bubble clouds. The source term in the transport equation is then derived according to the bubble growth rate with the bubble-bubble interaction. The proposed model is validated by various test simulations, including microscopic bubble cloud evolution as well as macroscopical two- and three-dimensional cavitating flows. Compared with previous models, namely the Kunz and Zwart cavitation models, the newly proposed model does not require adjustable parameters and generally results in better predictions both microscopic and macroscopical cases. This model is more physical.

캐비테이션 기포와 충격파의 간섭에 관한 연구 (A NUMERICAL STUDY ON THE CAVITATION BUBBLE-SHOCK INTERACTION)

  • 신병록
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.185-187
    • /
    • 2009
  • A density based method with homogeneous cavitation model to investigate cavitation-bubble collapsing behavior is proposed and applied to bubble-shock interaction problems. By applying this method, cylindrical bubbles located in the liquid and incident liquid shock wave are computed. Bubble collapsing behavior, shock-bubble interaction and shock transmission/reflection pattern are investigated.

  • PDF

A Numerical Study on the Bubble Noise and the Tip Vortex Cavitation Inception

  • Park, Jin-Keun;Georges L. Chahine
    • Journal of Ship and Ocean Technology
    • /
    • 제7권3호
    • /
    • pp.13-33
    • /
    • 2003
  • This paper presents a numerical study on tip vortex cavitation inception predictions based on non-spherical bubble dynamics including splitting and jet noise emission. A brief summary of the numerical method and its validation against a laboratory experiment are presented. The behavior of bubble nuclei is studied in a tip vortex flow field at two Reynolds numbers, provided by a viscous flow solver. The bubble behavior is simulated by an axisymmetric potential flow solver with the effect of surrounding viscous flow taken into account using one way coupling. The effects of bubble nucleus size and Reynolds number are studied. An effort to model the bubble splitting at lower cavitation numbers is also described.

기포군 영상분석을 통한 초음파 캐비테이션 현상의 변화 관찰 (Ultrasonic Cavitation Effect Observation Using Bubble Cloud Image Analysis)

  • 노시철;김주영;김진수;강정훈;최흥호
    • 센서학회지
    • /
    • 제20권2호
    • /
    • pp.124-130
    • /
    • 2011
  • In this study, in order to evaluate the yield of bubble by ultrasonic cavitation in HIFU sonication, the bubble image analysis was performed. The changing phenomenon of cavitation effect according to the sonication condition was discussed by analyzing the bubble image. Especially the appearance of bubble cloud, the size of micro-bubble, and the yield of bubble were considered. The 500 KHz and 1.1 MHz concave type ultrasonic transducers were used for HIFU sonication. Computer controlled digital camera was used to obtain the bubble image, and the binary image processing(binarization coefficient : 0.15) was performed to analyze them. In results of 500 KHz and 1.1 MHz transducer, the area of bubble cloud was increased in proportion to the rise in sonication intensity($R^2$ : 0.7031 and 0.811). The mean size of single microbubble was measured as 98.18 um in 500 KHz sonication, and 63.38 um in 1.1 MHz sonication. In addition, the amount of produced bubble was increased in proportion to sonication intensity. Through the result of this study and further study for variable image processing method, the quantitative evaluation of ultrasonic cavitation effects in HIFU operation could be possible with the linearity associated with the sonication conditions.

Prediction of Cavitation Intensity in Pumps Based on Propagation Analysis of Bubble Collapse Pressure Using Multi-Point Vibration Acceleration Method

  • Fukaya, Masashi;Ono, Shigeyoshi;Udo, Ryujiro
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권2호
    • /
    • pp.165-171
    • /
    • 2009
  • We developed a 'multi-point vibration acceleration method' for accurately predicting the cavitation intensity in pumps. Pressure wave generated by cavitation bubble collapse propagates and causes pump vibration. We measured vibration accelerations at several points on a casing, suction and discharge pipes of centrifugal and mixed-flow pumps. The measured vibration accelerations scattered because the pressure wave damped differently between the bubble collapse location and each sensor. In a conventional method, experimental constants are proposed without evaluating pressure propagation paths, then, the scattered vibration accelerations cause the inaccurate cavitation intensity. In our method, we formulated damping rate, transmittance of the pressure wave, and energy conversion from the pressure wave to the vibration along assumed pressure propagation paths. In the formulation, we theoretically defined a 'pressure propagation coefficient,' which is a correlation coefficient between the vibration acceleration and the bubble collapse pressure. With the pressure propagation coefficient, we can predict the cavitation intensity without experimental constants as proposed in a conventional method. The prediction accuracy of cavitation intensity is improved based on a statistical analysis of the multi-point vibration accelerations. The predicted cavitation intensity was verified with the plastic deformation rate of an aluminum sheet in the cavitation erosion area of the impeller blade. The cavitation intensities were proportional to the measured plastic deformation rates for three kinds of pumps. This suggests that our method is effective for estimating the cavitation intensity in pumps. We can make a cavitation intensity map by conducting this method and varying the flow rate and the net positive suction head (NPSH). The map is useful for avoiding the operating conditions having high risk of cavitation erosion.

NUMERICAL INVESTIGATION OF INTERACTION BEHAVIOR BETWEEN CAVITATION BUBBLE AND SHOCK WAVE

  • Shin, Byeong-Rog;An, Young-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.215-220
    • /
    • 2008
  • A numerical method for gas-liquid two-phase flow is applied to solve shock-bubble interaction problems. The present method employs a finite-difference Runge-Kutta method and Roe's flux difference splitting approximation with the MUSCL-TVD scheme. A homogeneous equilibrium cavitation model is used. By this method, a Riemann problem for shock tube was computed for validation. Then, shock-bubble interaction problems between cylindrical bubbles located in the liquid and incident liquid shock wave are computed.

  • PDF

NUMERICAL INVESTIGATION OF INTERACTION BEHAVIOR BETWEEN CAVITATION BUBBLE AND SHOCK WAVE

  • Shin, Byeong-Rog;An, Young-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.215-220
    • /
    • 2008
  • A numerical method for gas-liquid two-phase flow is applied to solve shock-bubble interaction problems. The present method employs a finite-difference Runge-Kutta method and Roe's flux difference splitting approximation with the MUSCL-TVD scheme. A homogeneous equilibrium cavitation model is used. By this method, a Riemann problem for shock tube was computed for validation. Then, shock-bubble interaction problems between cylindrical bubbles located in the liquid and incident liquid shock wave are computed.

  • PDF

수중익의 캐비테이션 소음 계측 및 캐비티 기포 거동 해석 (Measurement of Cavitation Noise of a Hydrofoil and Prediction of Cavity Bubble Behavior)

  • 안종우;강관형;송인행;김경열
    • 대한조선학회논문집
    • /
    • 제37권4호
    • /
    • pp.40-47
    • /
    • 2000
  • 수중익의 캐비테이션 소음이 캐비테이션 터널에서 측정되었다. 캐비테이션이 초기 발생하면 소음수준이 급격히 증가되며, 기포간에 상호간섭이 나타나지 않는 캐비테이션 수까지 증가된다. 그러나 케비테이션 수가 더욱 감소하여 기포간에 상호간섭이 나타나면, 오히려 소음수준이 감소되는 것으로 나타났다. 기포의 궤적과 체적의 변화는 각각 Lagrangian 추적법 및 Kirkwood-Bethe 가정하에 모형화된 방정식을 사용하여 해석하였다. 기포 체적변화의 수치계산 결과는 실험 결과와 비교적 일치되는 것으로 나타났다.

  • PDF

벤츄리 노즐 출구 형상과 작동 조건에 따른 캐비테이션 기포 발생 특성 연구 (Generation of emulsions due to the impact of surfactant-laden droplet on a viscous oil layer on water)

  • 오창훈;김준현;성재용
    • 한국가시화정보학회지
    • /
    • 제21권1호
    • /
    • pp.94-102
    • /
    • 2023
  • Three design parameters were considered in this study: outlet nozzle angle (30°, 60°, 80°), neck length (1 mm, 3 mm), and flow rate (0.5, 0.6, 0.7, 0.8 lpm). A neck diameter of 0.5 mm induced cavitation flow at a venture nozzle. A secondary transparent chamber was connected after ejection to increase bubble duration and shape visibility. The bubble size was estimated using a Gaussian kernel function to identify bubbles in the acquired images. Data on bubble size were used to obtain Sauter's mean diameter and probability density function to obtain specific bubble state conditions. The degree of bubble generation according to the bubble size was compared for each design variable. The bubble diameter increased as the flow rate increased. The frequency of bubble generation was highest around 20 ㎛. With the same neck length, the smaller the CV number, the larger the average bubble diameter. It is possible to increase the generation frequency of smaller bubbles by the cavitation method by changing the magnification angle and length of the neck. However, if the flow rate is too large, the average bubble diameter tends to increase, so an appropriate flow rate should be selected.

유압관로에서의 캐비테이션 초생 (Cavitation inception in oil hydraulic pipeline)

  • 이일영;염만오;이진걸
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.46-52
    • /
    • 1988
  • The cavitation inception in oil hydraulic pipeline was investigated experimentally and numerically. In the experiment, negative pressures below-1 MPa(absolute pressure) were measured, associated with the transient flows in oil hydraulic pipeline. These experimental results show that the common hydraulic oil in the experimental pipeline withstands large tensions. In order to interpret the experimental results on cavitation inception, the growth of a spherical bubble in viscous compressible fluid due to a stepwise pressure drop was investigated by numerical analysis, and the critical bubble radius was obtained. The calculated value of the critical bubble radius corresponding to the negative pressure measured in the experiment is so small that the premised conditions about the bubble shape in the analysis is unsatisfactory. The physical significance of this calculated result implies the fact that there hardly exist free bubbles which can act as cavitation nuclei in the experimental pipeline.

  • PDF