DOI QR코드

DOI QR Code

A new cavitation model considering inter-bubble action

  • Shi, Yazhen (School of Marine Science and Technology, Northwestern Polytechnical University) ;
  • Luo, Kai (School of Marine Science and Technology, Northwestern Polytechnical University) ;
  • Chen, Xiaopeng (School of Marine Science and Technology, Northwestern Polytechnical University) ;
  • Li, Daijin (School of Marine Science and Technology, Northwestern Polytechnical University) ;
  • Jia, Laibing (Department of Naval Architecture Ocean and Marine Engineering, University of Strathclyde)
  • Received : 2021.04.22
  • Accepted : 2021.05.29
  • Published : 2021.11.30

Abstract

The process of cavitation involves generation, growth, coalescence, and collapse of small bubbles and is tremendously influenced by bubble-bubble interactions. To understand these interactions, a new cavitation model based on the transport equation is proposed herein. The modified Rayleigh-Plesset equation is analyzed to determine the bubble growth rate by assuming equal-sized spherical bubble clouds. The source term in the transport equation is then derived according to the bubble growth rate with the bubble-bubble interaction. The proposed model is validated by various test simulations, including microscopic bubble cloud evolution as well as macroscopical two- and three-dimensional cavitating flows. Compared with previous models, namely the Kunz and Zwart cavitation models, the newly proposed model does not require adjustable parameters and generally results in better predictions both microscopic and macroscopical cases. This model is more physical.

Keywords

Acknowledgement

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (Nos. 11872315, 51679202, and 51579209); the authors also wish to sincerely thank Prof. L. Zhang at ZJU for the fruitful discussions.

References

  1. Bremond, N., Arora, M., Ohl, C.D., Lohse, D., 2006. Controlled multibubble surface cavitation. Phys. Rev. Lett. 96, 224501. https://doi.org/10.1103/PhysRevLett.96.224501.
  2. Brennen, C.E., 1993. Cavitation and Bubble Dynamics. Oxford University Press, New York.
  3. Chen, X.P., 2010. Simulation of 2D cavitation bubble growth under shear flow by lattice Boltzmann model. Commun. Comput. Phys. 7, 212-223. https://doi.org/10.4208/cicp.2009.09.015.
  4. Delannoy, Y., Kueny, J.L., 1990. Two phase flow approach in unsteady cavitation modelling. ASME Cavitation Multiphase Flow Forum 98, 153-160.
  5. Du, T.Z., Wang, Y., Liao, L.J., Huang, C.G., 2016. A numerical model for the evolution of internal structure of cavitation cloud. Phys. Fluids 28, 077103. https://doi.org/10.1063/1.4958885.
  6. Du, T.Z., Wang, Y.W., Huang, C.G., Liao, L.J., 2017. A numerical model for cloud cavitation based on bubble cluster. Theor. Appl. Mech. Lett. 7, 231-234. https://doi.org/10.1016/j.taml.2017.08.001.
  7. Geng, L., Escaler, X., 2019. Assessment of RANS turbulence models and Zwart cavitation model empirical coefficients for the simulation of unsteady cloud cavitation. Eng. Appl. Comput. Fluid Mech. 14, 151-167. https://doi.org/10.1080/19942060.2019.1694996.
  8. Gevari, M.T., Abbasiasl, T., Niazi, S., et al., 2020. Direct and indirect thermal applications of hydrodynamic and acoustic cavitation: a review. Appl. Therm. Eng. 64, 104996. https://doi.org/10.1016/j.applthermaleng.2020.115065.
  9. Goncalves, E., Patella, R.F., 2009. Numerical simulation of cavitating flows with homogeneous models. Comput. Fluids 38, 1682-1696. https://doi.org/10.1016/j.compfluid.2009.03.001.
  10. Goncalves, E., 2011. Numerical study of unsteady turbulent cavitating flows. Eur. J. Mech. B Fluid 30, 26-40. https://doi.org/10.1016/j.euromechflu.2010.08.002.
  11. Hirt, C.W., Nichols, B.D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201-225. https://doi.org/10.1016/0021-9991(81)90145-5.
  12. Huang, B., Young, Y., Wang, G., Shyy, W., 2013. Combined experimental and computational investigation of unsteady structure of sheet/cloud cavitation. J. Fluid Eng. 135, 071301 https://doi.org/10.1115/1.4023650.
  13. Ida, M., 2009. Multibubble cavitation inception. Phys. Fluids 21, 113302. https://doi.org/10.1063/1.3265547.
  14. Kubota, A., Kato, H., Yamaguchi, H., 1992. A new modelling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section. J. Fluid Mech. 240, 59-96. https://doi.org/10.1017/S002211209200003X.
  15. Long, X., Cheng, H., Ji, B., Arndt, R.E., 2017. Numerical investigation of attached cavitation shedding dynamics around the Clark-Y hydrofoil with the FBDCM and an integral method. Ocean. Eng. 137, 247-261. https://doi.org/10.1016/j.oceaneng.2017.03.054.
  16. Ma, J.S., Hsiao, C.T., Chahine, G.L., 2018. Numerical study of acoustically driven bubble cloud dynamics near a rigid wall. Ultrason. Sonochem. 40, 944-954. https://doi.org/10.1016/j.ultsonch.2017.08.033.
  17. Maeda, K., Colonius, T., 2018. Eulerian-Lagrangian method for simulation of cloud cavitation. J. Comput. Phys. 371, 994-1017. https://doi.org/10.1016/j.jcp.2018.05.029.
  18. Maiga, M.A., Coutier-Delgosha, O., Buisine, D., 2018. A new cavitation model based on bubble-bubble interactions. Phys. Fluids 30, 123301. https://doi.org/10.1063/1.5052257.
  19. Maiga, M.A., Coutier-Delgosha, O., Buisine, D., 2019. Analysis of sheet cavitation with bubble/bubble interaction models. Phys. Fluids 31, 073302. https://doi.org/10.1063/1.5095781.
  20. Menter, F.R., 1993. Zonal two equation k-ω turbulence models for aerodynamic flows. AIAA Paper 32, 1598-1605. https://doi.org/10.2514/3.12149.
  21. Mettin, R., Akhatov, I., Parlitz, U., Ohl, C.D., 1993. Bjerknes forces between small cavitation bubbles in a strong acoustic field. Phys. Rev. E 56, 2924-2931. https://doi.org/10.1103/PhysRevE.56.2924.
  22. Morgut, M., Nobile, E., Bilus, I., 2011. Comparison of mass transfer models for the numerical prediction of sheet cavitation around a hydrofoil. Int. J. Multiphas. Flow 37, 620-626. https://doi.org/10.1016/j.ijmultiphaseflow.2011.03.005.
  23. Niederedzka, A., Schnerr, G.H., Sobieski, W., 2016. Review of numerical models of cavitating flows with the use of the homogeneous approach. Arch. Therm. 37, 71-88. https://doi.org/10.1515/aoter-2016-0013.
  24. Peng, X., Wang, B., Li, H., Xu, L., Song, M., 2017. Generation of abnormal acoustic noise: singing of a cavitating tip vortex. Phys. Rev. Fluids 2, 053602. https://doi.org/10.1103/PhysRevFluids.2.053602.
  25. Plesset, M.S., 1949. The dynamics of cavitation bubbles. J. Appl. Mech. 16, 228-231. https://resolver.caltech.edu/CaltechAUTHORS:20140808-114249321. https://doi.org/10.1115/1.4009975
  26. Rasthofer, U., Wermelinger, F., Karnakov, P., Sukys, J., Koumoutsakos, P., 2019. Computational study of the collapse of a cloud with 12500 gas bubbles in a liquid. Phys. Rev. Fluids 4, 063602. https://doi.org/10.1103/PhysRevFluids.4.063602.
  27. Roohi, E., Zahiri, A.P., Passandideh-Fard, M., 2013. Numerical simulation of cavitation around a two-dimensional hydrofoil using VOF method and LES turbulence model. Appl. Math. Model. 37, 6469-6488. https://doi.org/10.1016/j.apm.2012.09.002.
  28. Rouse, H., Msnown, J.S., 1948. Cavitation and Pressure Distribution, Head Forms at Zero Angle of Yaw. State University of Iowa, Iowa.
  29. Sauer, J., Schnerr, G.H., 2001. Development of a new cavitation model based on bubble dynamics. J. Appl. Math. Mech. 81, 561-562. https://doi.org/10.1002/zamm.20010811559.
  30. Singhal, A.K., Athavale, M.M., Li, H.Y., Jiang, Y., 2002. Mathematical basis and validation of the full cavitation model. J. Fluid Eng. 124, 617-624. https://doi.org/10.1115/1.1486223.
  31. Stride, E., Segers, T., Lajoinie, G., 2020. Microbubble agents: new directions. Phys. Med. Biol. 46, 1326-1343. https://doi.org/10.1016/j.ultrasmedbio.2020.01.027.
  32. Tiwari, T., Pantano, C., Freund, J.B., 2015. Growth-and-collapse dynamics of small bubble clusters near a wall. J. Fluid Mech. 775, 1-23. https://doi.org/10.1017/jfm.2015.287.
  33. Vaidyanathan, R., Senocak, I., Wu, J., Shyy, W., 2003. Sensitivity evaluation of a transport-based turbulent cavitation model. J. Fluid Eng. 125, 447-458. https://doi.org/10.1115/1.1566048.
  34. Wan, C., Wang, B., Wang, Q., et al., 2017. Probing and imaging of vapor-water mixture properties inside partial/cloud cavitating flows. J. Fluid Eng. 139, 031303 https://doi.org/10.1115/1.4035013.
  35. Wang, G., Senocak, I., Shyy, W., 2001. Dynamics of attached turbulent cavitating flow. Prog. Aero. Sci. 37, 551-581. https://doi.org/10.1016/S0376-0421(01)00014-8.
  36. Wang, C.C., Wang, G.Y., Huang, B., 2020. Dynamics of unsteady compressible cavitating flows associated with the cavity shedding. Ocean. Eng. 209, 107025. https://doi.org/10.1016/j.oceaneng.2020.107025.
  37. Ye, Y., Li, G., 2016. Modeling of hydrodynamic cavitating flows considering the bubble-bubble interaction. Int. J. Multiphas. Flow 84, 155-164. https://doi.org/10.1016/j.ijmultiphaseflow.2016.03.022.
  38. Zhang, Y.N., Min, Q., Zhang, Y.N., Du, X.Z., 2016. Effects of liquid compressibility on bubble-bubble interactions between oscillating bubbles. J. Hydrodyn. B 28, 832-839. https://doi.org/10.1016/S1001-6058(16)60685-6.
  39. Zhang, L.X., Zhang, J., Deng, J., 2019. Numerical investigation on the collapse of a bubble cluster near a solid wall. Phys. Rev. E 99, 043108. https://doi.org/10.1103/PhysRevE.99.043108.
  40. Zwart, P.J., Gerber, A.G., Belamri, T., 2004. A two-phase flow model for predicting cavitation dynamics. Proc. Int. Conf. Multiphase Flow 152.