Browse > Article
http://dx.doi.org/10.1016/j.ijnaoe.2021.05.005

A new cavitation model considering inter-bubble action  

Shi, Yazhen (School of Marine Science and Technology, Northwestern Polytechnical University)
Luo, Kai (School of Marine Science and Technology, Northwestern Polytechnical University)
Chen, Xiaopeng (School of Marine Science and Technology, Northwestern Polytechnical University)
Li, Daijin (School of Marine Science and Technology, Northwestern Polytechnical University)
Jia, Laibing (Department of Naval Architecture Ocean and Marine Engineering, University of Strathclyde)
Publication Information
International Journal of Naval Architecture and Ocean Engineering / v.13, no.1, 2021 , pp. 566-574 More about this Journal
Abstract
The process of cavitation involves generation, growth, coalescence, and collapse of small bubbles and is tremendously influenced by bubble-bubble interactions. To understand these interactions, a new cavitation model based on the transport equation is proposed herein. The modified Rayleigh-Plesset equation is analyzed to determine the bubble growth rate by assuming equal-sized spherical bubble clouds. The source term in the transport equation is then derived according to the bubble growth rate with the bubble-bubble interaction. The proposed model is validated by various test simulations, including microscopic bubble cloud evolution as well as macroscopical two- and three-dimensional cavitating flows. Compared with previous models, namely the Kunz and Zwart cavitation models, the newly proposed model does not require adjustable parameters and generally results in better predictions both microscopic and macroscopical cases. This model is more physical.
Keywords
Bubble-bubble interaction; Bubble cloud; Cavitation model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhang, Y.N., Min, Q., Zhang, Y.N., Du, X.Z., 2016. Effects of liquid compressibility on bubble-bubble interactions between oscillating bubbles. J. Hydrodyn. B 28, 832-839. https://doi.org/10.1016/S1001-6058(16)60685-6.   DOI
2 Zhang, L.X., Zhang, J., Deng, J., 2019. Numerical investigation on the collapse of a bubble cluster near a solid wall. Phys. Rev. E 99, 043108. https://doi.org/10.1103/PhysRevE.99.043108.   DOI
3 Roohi, E., Zahiri, A.P., Passandideh-Fard, M., 2013. Numerical simulation of cavitation around a two-dimensional hydrofoil using VOF method and LES turbulence model. Appl. Math. Model. 37, 6469-6488. https://doi.org/10.1016/j.apm.2012.09.002.   DOI
4 Morgut, M., Nobile, E., Bilus, I., 2011. Comparison of mass transfer models for the numerical prediction of sheet cavitation around a hydrofoil. Int. J. Multiphas. Flow 37, 620-626. https://doi.org/10.1016/j.ijmultiphaseflow.2011.03.005.   DOI
5 Wang, G., Senocak, I., Shyy, W., 2001. Dynamics of attached turbulent cavitating flow. Prog. Aero. Sci. 37, 551-581. https://doi.org/10.1016/S0376-0421(01)00014-8.   DOI
6 Wang, C.C., Wang, G.Y., Huang, B., 2020. Dynamics of unsteady compressible cavitating flows associated with the cavity shedding. Ocean. Eng. 209, 107025. https://doi.org/10.1016/j.oceaneng.2020.107025.   DOI
7 Goncalves, E., 2011. Numerical study of unsteady turbulent cavitating flows. Eur. J. Mech. B Fluid 30, 26-40. https://doi.org/10.1016/j.euromechflu.2010.08.002.   DOI
8 Ida, M., 2009. Multibubble cavitation inception. Phys. Fluids 21, 113302. https://doi.org/10.1063/1.3265547.   DOI
9 Ma, J.S., Hsiao, C.T., Chahine, G.L., 2018. Numerical study of acoustically driven bubble cloud dynamics near a rigid wall. Ultrason. Sonochem. 40, 944-954. https://doi.org/10.1016/j.ultsonch.2017.08.033.   DOI
10 Wan, C., Wang, B., Wang, Q., et al., 2017. Probing and imaging of vapor-water mixture properties inside partial/cloud cavitating flows. J. Fluid Eng. 139, 031303 https://doi.org/10.1115/1.4035013.   DOI
11 Ye, Y., Li, G., 2016. Modeling of hydrodynamic cavitating flows considering the bubble-bubble interaction. Int. J. Multiphas. Flow 84, 155-164. https://doi.org/10.1016/j.ijmultiphaseflow.2016.03.022.   DOI
12 Zwart, P.J., Gerber, A.G., Belamri, T., 2004. A two-phase flow model for predicting cavitation dynamics. Proc. Int. Conf. Multiphase Flow 152.
13 Plesset, M.S., 1949. The dynamics of cavitation bubbles. J. Appl. Mech. 16, 228-231. https://resolver.caltech.edu/CaltechAUTHORS:20140808-114249321.   DOI
14 Maiga, M.A., Coutier-Delgosha, O., Buisine, D., 2018. A new cavitation model based on bubble-bubble interactions. Phys. Fluids 30, 123301. https://doi.org/10.1063/1.5052257.   DOI
15 Menter, F.R., 1993. Zonal two equation k-ω turbulence models for aerodynamic flows. AIAA Paper 32, 1598-1605. https://doi.org/10.2514/3.12149.
16 Rasthofer, U., Wermelinger, F., Karnakov, P., Sukys, J., Koumoutsakos, P., 2019. Computational study of the collapse of a cloud with 12500 gas bubbles in a liquid. Phys. Rev. Fluids 4, 063602. https://doi.org/10.1103/PhysRevFluids.4.063602.   DOI
17 Kubota, A., Kato, H., Yamaguchi, H., 1992. A new modelling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section. J. Fluid Mech. 240, 59-96. https://doi.org/10.1017/S002211209200003X.   DOI
18 Du, T.Z., Wang, Y.W., Huang, C.G., Liao, L.J., 2017. A numerical model for cloud cavitation based on bubble cluster. Theor. Appl. Mech. Lett. 7, 231-234. https://doi.org/10.1016/j.taml.2017.08.001.   DOI
19 Mettin, R., Akhatov, I., Parlitz, U., Ohl, C.D., 1993. Bjerknes forces between small cavitation bubbles in a strong acoustic field. Phys. Rev. E 56, 2924-2931. https://doi.org/10.1103/PhysRevE.56.2924.   DOI
20 Peng, X., Wang, B., Li, H., Xu, L., Song, M., 2017. Generation of abnormal acoustic noise: singing of a cavitating tip vortex. Phys. Rev. Fluids 2, 053602. https://doi.org/10.1103/PhysRevFluids.2.053602.   DOI
21 Goncalves, E., Patella, R.F., 2009. Numerical simulation of cavitating flows with homogeneous models. Comput. Fluids 38, 1682-1696. https://doi.org/10.1016/j.compfluid.2009.03.001.   DOI
22 Niederedzka, A., Schnerr, G.H., Sobieski, W., 2016. Review of numerical models of cavitating flows with the use of the homogeneous approach. Arch. Therm. 37, 71-88. https://doi.org/10.1515/aoter-2016-0013.   DOI
23 Maiga, M.A., Coutier-Delgosha, O., Buisine, D., 2019. Analysis of sheet cavitation with bubble/bubble interaction models. Phys. Fluids 31, 073302. https://doi.org/10.1063/1.5095781.   DOI
24 Rouse, H., Msnown, J.S., 1948. Cavitation and Pressure Distribution, Head Forms at Zero Angle of Yaw. State University of Iowa, Iowa.
25 Sauer, J., Schnerr, G.H., 2001. Development of a new cavitation model based on bubble dynamics. J. Appl. Math. Mech. 81, 561-562. https://doi.org/10.1002/zamm.20010811559.   DOI
26 Chen, X.P., 2010. Simulation of 2D cavitation bubble growth under shear flow by lattice Boltzmann model. Commun. Comput. Phys. 7, 212-223. https://doi.org/10.4208/cicp.2009.09.015.   DOI
27 Singhal, A.K., Athavale, M.M., Li, H.Y., Jiang, Y., 2002. Mathematical basis and validation of the full cavitation model. J. Fluid Eng. 124, 617-624. https://doi.org/10.1115/1.1486223.   DOI
28 Tiwari, T., Pantano, C., Freund, J.B., 2015. Growth-and-collapse dynamics of small bubble clusters near a wall. J. Fluid Mech. 775, 1-23. https://doi.org/10.1017/jfm.2015.287.   DOI
29 Vaidyanathan, R., Senocak, I., Wu, J., Shyy, W., 2003. Sensitivity evaluation of a transport-based turbulent cavitation model. J. Fluid Eng. 125, 447-458. https://doi.org/10.1115/1.1566048.   DOI
30 Gevari, M.T., Abbasiasl, T., Niazi, S., et al., 2020. Direct and indirect thermal applications of hydrodynamic and acoustic cavitation: a review. Appl. Therm. Eng. 64, 104996. https://doi.org/10.1016/j.applthermaleng.2020.115065.   DOI
31 Hirt, C.W., Nichols, B.D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201-225. https://doi.org/10.1016/0021-9991(81)90145-5.   DOI
32 Huang, B., Young, Y., Wang, G., Shyy, W., 2013. Combined experimental and computational investigation of unsteady structure of sheet/cloud cavitation. J. Fluid Eng. 135, 071301 https://doi.org/10.1115/1.4023650.   DOI
33 Long, X., Cheng, H., Ji, B., Arndt, R.E., 2017. Numerical investigation of attached cavitation shedding dynamics around the Clark-Y hydrofoil with the FBDCM and an integral method. Ocean. Eng. 137, 247-261. https://doi.org/10.1016/j.oceaneng.2017.03.054.   DOI
34 Maeda, K., Colonius, T., 2018. Eulerian-Lagrangian method for simulation of cloud cavitation. J. Comput. Phys. 371, 994-1017. https://doi.org/10.1016/j.jcp.2018.05.029.   DOI
35 Du, T.Z., Wang, Y., Liao, L.J., Huang, C.G., 2016. A numerical model for the evolution of internal structure of cavitation cloud. Phys. Fluids 28, 077103. https://doi.org/10.1063/1.4958885.   DOI
36 Stride, E., Segers, T., Lajoinie, G., 2020. Microbubble agents: new directions. Phys. Med. Biol. 46, 1326-1343. https://doi.org/10.1016/j.ultrasmedbio.2020.01.027.   DOI
37 Geng, L., Escaler, X., 2019. Assessment of RANS turbulence models and Zwart cavitation model empirical coefficients for the simulation of unsteady cloud cavitation. Eng. Appl. Comput. Fluid Mech. 14, 151-167. https://doi.org/10.1080/19942060.2019.1694996.   DOI
38 Bremond, N., Arora, M., Ohl, C.D., Lohse, D., 2006. Controlled multibubble surface cavitation. Phys. Rev. Lett. 96, 224501. https://doi.org/10.1103/PhysRevLett.96.224501.   DOI
39 Brennen, C.E., 1993. Cavitation and Bubble Dynamics. Oxford University Press, New York.
40 Delannoy, Y., Kueny, J.L., 1990. Two phase flow approach in unsteady cavitation modelling. ASME Cavitation Multiphase Flow Forum 98, 153-160.