• 제목/요약/키워드: Cause of failure

검색결과 2,106건 처리시간 0.026초

침탄처리된 기어의 미세 조직학적 손상 원인분석 (Failure Analysis of Carburized Gears by Microstructural Observation)

  • 전해동;장성호;김경욱;국연호
    • 열처리공학회지
    • /
    • 제27권4호
    • /
    • pp.191-201
    • /
    • 2014
  • The gear was made of SNC815 case-carburized, quench hardened and tempered steel. The gears were failed far earlier than the expected service life used in the industrial site. Causes of the failed gear were analyzed by microstructure observation. By the SEM and micro structure examinations, the damaged surfaces had been weared and failed by fatigue. Through microscope observation on the damaged surface, it was found that the cause of failure was determined by external overloading and the initial stage of the damage was closely related to complex contact fatigue failure. The overload and contact fatigue contributed to the early failure cause.

코팅지 박리파손에 대한 근본원인분석 (Root Cause Analysis on Delamination Failure between Coating Film and Paper)

  • 이덕보
    • 한국신뢰성학회:학술대회논문집
    • /
    • 한국신뢰성학회 2005년도 학술발표대회 논문집
    • /
    • pp.199-208
    • /
    • 2005
  • In the calendar and the advertising catalog, the surface Is usually coated by coating polypropylene film. The delamination failure of coating film depends on surface roughness and quality of the substrate paper. In this paper, the mechanisms of delamination failure between the coating film and the paper is investigated by using the root cause analysis as one of techniques of reliability evaluation. The papers used in failure analysis are three kind products made by two domestic and one foreign companies. It found that the main causes of delamination failure between the coating film and the paper were the creation of microvoids caused by shape of filler and their growth caused by contraction of paper.

  • PDF

공통원인 고장분석을 위한 전산 코드 개발 (Development of a Computer Code for Common Cause Failure Analysis)

  • Park, Byung-Hyun;Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • 제24권1호
    • /
    • pp.14-29
    • /
    • 1992
  • 원자력 발전소에서 발생하는 공통원인 고장을 분석하기 위한 컴퓨터 코드 COMCAF를 개발하였다. 공통원인 고장을 다룰 때, 먼저 계통의 최소 단절집합들을 공통원인 기본사상들이 고려되지 않은 고장수목으로부터 구한다. 그리고, 공통원인 고장들이 같은 최소 단절집합내의 부품들간에 있는지 또는 서로 다른 최소 단절집합들의 부품들간에 있는지를 고려하여 이들 최소 단절집합들의 발생 확률값을 계산한다. 유사하거나 동일한 부품들간에 공통원인 고장이 있을때는 Basic Para-meter 모델을 사용한다. 그러나, 서로 다른 부품들간에 공통원인 고장이 있을때는 Basic Para-meter모델에 쓰인 Symmetry Assumption을 두개 이상의 부품에 영향을 주는 기본사상들에만 적용한다. Inclusion-Exclusion방법을 사용하여 정점사상확률간을 구한다. 이 경우 같은 최소 단절 집합들에 있는 부품들의 공통원인 고장뿐만아니라 서로 다른 최소 단절집합들에 있는 부품들의 공통원인 고장도 쉽게 고려될 수 있다. 본 연구에서는 이러한 공통원인 고장분석을 가압경수로의 보조 급수계통에 적용하였다. 이들 정점사상의 확률값들을 공통원인 고장이 없는 경우와 비교하였다.

  • PDF

Numerical simulation on the coupled chemo-mechanical damage of underground concrete pipe

  • Xiang-nan Li;Xiao-bao Zuo;Yu-xiao Zou;Yu-juan Tang
    • Structural Engineering and Mechanics
    • /
    • 제86권6호
    • /
    • pp.779-791
    • /
    • 2023
  • Long-termly used in water supply, an underground concrete pipe is easily subjected to the coupled action of pressure loading and flowing water, which can cause the chemo-mechanical damage of the pipe, resulting in its premature failure and lifetime reduction. Based on the leaching characteristics and damage mechanism of concrete pipe, this paper proposes a coupled chemo-mechanical damage and failure model of underground concrete pipe for water supply, including a calcium leaching model, mechanical damage equation and a failure criterion. By using the model, a numerical simulation is performed to analyze the failure process of underground concrete pipe, such as the time-varying calcium concentration in concrete, the thickness variation of pipe wall, the evolution of chemo-mechanical damage, the distribution of concrete stress on the pipe and the lifetime of the pipe. Results show that, the failure of the pipe is a coupled chemo-mechanical damage process companied with calcium leaching. During its damage and failure, the concentrations of calcium phase in concrete decrease obviously with the time, and it can cause an increase in the chemo-mechanical damage of the pipe, while the leaching and abrasion induced by flowing water can lead to the boundary movement and wall thickness reduction of the pipe, and it results in the stress redistribution on the pipe section, a premature failure and lifetime reduction of the pipe.

단양지역 붕적토 붕괴사면의 안정평가 (Slope Stability Assessment for Colluvial Soil Slumps of the Danyang Region)

  • 배우석;이봉직;장광택
    • 한국안전학회지
    • /
    • 제22권3호
    • /
    • pp.74-80
    • /
    • 2007
  • In this study, a documentary survey, face mapping, and stability analysis were performed on the collapsed colluvial soil slope. The purpose of this paper is to identify the cause of slope failure and determine slope stability for similar areas. Boring samples were extracted from the slump and laboratory tests were performed to find out the cause of slope failure. In addition, the limit equilibrium method was used in order to determine the stability of the slope. As a result of this investigation and the analysis of data, the type of collapse and cause of slope failure have been shown to have a strong correlation with the natural geographical and geological features which make up the collapse profile of the study area. These results will help to develop guidelines for formulating countermeasure methods.

Prediction Methodology for Reliability of Semiconductor Packages

  • Kim, Jin-Young
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2002년도 International Symposium
    • /
    • pp.79-94
    • /
    • 2002
  • Root cause -Thermal expansion coefficient mismatch -Tape warpage -Initial die crack (die roughness) Guideline for failure prevention -Optimized tape/Substrate design for minimizing the warpage -Fine surface of die backside Root cause -Thermal expansion coefficient mismatch - Repetitive bending of a signal trace during TC cycle - Solder mask damage Guideline for failure prevention - Increase of trace width - Don't make signal trace passing the die edge - Proper material selection with thick substrate core Root cause -Thermal expansion coefficient mismatch -Creep deformation of solder joint(shear/normal) -Material degradation Guideline for failure Prevention -Increase of solder ball size -Proper selection of the PCB/Substrate thickness -Optimal design of the ball array -Solder mask opening type : NSMD -In some case, LGA type is better

  • PDF

알칼리-골재 반응에 의한 무근콘크리트 포장의 파손 고찰 (An Investigation of AAR Distress in the Plain Concrete Pavement)

  • 홍승호;한승환;안성순;장태순
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.98-101
    • /
    • 2003
  • The Alkali-Aggregate Reaction (AAR) may cause a serious failure in the concrete structures. Several researchers in some nations have performed the continuous studies to prevent failure of a concrete structures by the AAR distress as well as the studies to manifest the mechanism. The ASTM Standards to prevent failure by potential AAR aggregates were established in 1950. The KS F2545 and KS F 2546 were established to test the susceptibility of aggregate to potential AAR in 1982. But the researches on the AAR have not been performed affluently in Korea because the distress due to AAR has seldom been reported officially. In this study, the Chemical Method and Scanning Electron Microscopy (SEM) were used to verifying the cause of the pattern crack on the surface and internal crack in the plain concrete pavement. It can be concluded that the distress of a specific site in plain concrete pavement was mainly due to AAR, and the chemical method and SEM may be the effective tools for verifying the cause of AAR distresses.

  • PDF

종속 고장을 가지는 원형 Consecutive-k-out-of-n:F 시스템의 경제적 설계

  • 윤원영;김귀래;고용석;류기열
    • 한국신뢰성학회:학술대회논문집
    • /
    • 한국신뢰성학회 2000년도 추계학술대회
    • /
    • pp.387-395
    • /
    • 2000
  • Circular consecutive-k-out-of-n:F system when the failure of component is dependent is studied. We assume that the failure of a component in the system increase the failure rate of the survivor which is working just before the failed component. In this case, a mean time to failure (MTTF), a average failure number of the system, and the expected cost per unit time are obtained. Then the minimum number of consecutive failed components to cause system failure to minimize the expected cost per unit time is determined as searching paths to system failure. And various numerical examples are studied.

  • PDF

2D and 3D numerical analysis on strut responses due to one-strut failure

  • Zhang, Wengang;Zhang, Runhong;Fu, Yinrong;Goh, A.T.C.;Zhang, Fan
    • Geomechanics and Engineering
    • /
    • 제15권4호
    • /
    • pp.965-972
    • /
    • 2018
  • In deep braced excavations, struts and walers play an essential role in the whole supporting system. For multi-level strut systems, accidental strut failure is possible. Once a single strut fails, it is possible for the loads carried from the previous failed strut to be transferred to the adjacent struts and therefore cause one or more struts to fail. Consequently, progressive collapse may occur and cause the whole excavation system to fail. One of the reasons for the Nicoll Highway Collapse was attributed to the failure of the struts and walers. Consequently, for the design of braced excavation systems in Singapore, one of the requirements by the building authorities is to perform one-strut failure analyses, in order to ensure that there is no progressive collapse when one strut was damaged due to a construction accident. Therefore, plane strain 2D and three-dimensional (3D) finite element analyses of one-strut failure of the braced excavation system were carried out in this study to investigate the effects of one-strut failure on the adjacent struts.