• Title/Summary/Keyword: Cauchy transform

Search Result 18, Processing Time 0.018 seconds

The Cauchy Representation of Integrable and Tempered Boehmians

  • Loonker, Deshna;Banerji, Pradeep Kumar
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.4
    • /
    • pp.481-493
    • /
    • 2007
  • This paper deals with, by employing the relation between Cauchy representation and the Fourier transform and properties of the former in $L_1$-space, the investigation of the Cauchy representation of integrable Boehmians as a natural extension of tempered distributions, we have investigated Cauchy representation of tempered Boehmians. An inversion formula is also proved.

  • PDF

THE SPACE-TIME FRACTIONAL DIFFUSION EQUATION WITH CAPUTO DERIVATIVES

  • HUANG F.;LIU F.
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.179-190
    • /
    • 2005
  • We deal with the Cauchy problem for the space-time fractional diffusion equation, which is obtained from standard diffusion equation by replacing the second-order space derivative with a Caputo (or Riemann-Liouville) derivative of order ${\beta}{\in}$ (0, 2] and the first-order time derivative with Caputo derivative of order ${\beta}{\in}$ (0, 1]. The fundamental solution (Green function) for the Cauchy problem is investigated with respect to its scaling and similarity properties, starting from its Fourier-Laplace representation. We derive explicit expression of the Green function. The Green function also can be interpreted as a spatial probability density function evolving in time. We further explain the similarity property by discussing the scale-invariance of the space-time fractional diffusion equation.

비틀림하의 복합원통에 있는 원주 표면균열에 대한 응력 확대 계수

  • Kim, Yeong-Jong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.151-157
    • /
    • 2000
  • Stress intensity factors for the circumferential surface crack of a long composite cylinder under torsion is investigated. The problem is formulated as a singular integral equation of the first kind with a Cauchy type kernel using the integral transform technique. The mode III stress intensity factors at the crack tips are presented when (a) the inner crack tip is away from the interface and (b) the inner crack tip is at the interface.

  • PDF

THE FUNDAMENTAL SOLUTION OF THE SPACE-TIME FRACTIONAL ADVECTION-DISPERSION EQUATION

  • HUANG F.;LIU F.
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.339-350
    • /
    • 2005
  • A space-time fractional advection-dispersion equation (ADE) is a generalization of the classical ADE in which the first-order time derivative is replaced with Caputo derivative of order $\alpha{\in}(0,1]$, and the second-order space derivative is replaced with a Riesz-Feller derivative of order $\beta{\in}0,2]$. We derive the solution of its Cauchy problem in terms of the Green functions and the representations of the Green function by applying its Fourier-Laplace transforms. The Green function also can be interpreted as a spatial probability density function (pdf) evolving in time. We do the same on another kind of space-time fractional advection-dispersion equation whose space and time derivatives both replacing with Caputo derivatives.

Receding contact problem of an orthotropic layer supported by rigid quarter planes

  • Huseyin Oguz;Ilkem Turhan Cetinkaya;Isa Comez
    • Structural Engineering and Mechanics
    • /
    • v.91 no.5
    • /
    • pp.459-468
    • /
    • 2024
  • This study presents a frictionless receding contact problem for an orthotropic elastic layer. It is assumed that the layer is supported by two rigid quarter planes and the material of the layer is orthotropic. The layer of thickness h is indented by a rigid cylindrical punch of radius R. The problem is modeled by using the singular integral equation method with the help of the Fourier transform technique. Applying the boundary conditions of the problem the system of singular integral equations is obtained. In this system, the unknowns are the contact stresses and contact widths under the punch and between the layer and rigid quarter planes. The Gauss-Chebyshev integration method is applied to the obtained system of singular integral equations of Cauchy type. Five different orthotropic materials are considered during the analysis. Numerical results are presented to interpret the effect of the material property and the other parameters on the contact stress and the contact width.

Nonlinear Vortical Forced Oscillation of Floating Bodies (부유체의 대진폭 운동에 기인한 동유체력)

  • 이호영;황종흘
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.86-97
    • /
    • 1993
  • A numerical method is developed for the nonlinear motion of two-dimensional wedges and axisymmetric-forced-heaving motion using Semi-Largrangian scheme under assumption of potential flows. In two-dimensional-problem Cauchy's integral theorem is applied to calculate the complex potential and its time derivative along boundary. In three-dimensional-problem Rankine ring sources are used in a Green's theorem boundary integral formulation to salve the field equation. The solution is stepped forward numerically in time by integrating the exact kinematic and dynamic free-surface boundary condition. Numerical computations are made for the entry of a wedge with a constant velocity and for the forced harmonic heaving motion from rest. The problem of the entry of wedge compared with the calculated results of Champan[4] and Kim[11]. By Fourier transform of forces in time domain, added mass coefficient, damping coefficient, second harmonic forces are obtained and compared with Yamashita's experiment[5].

  • PDF