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Abstract. This paper deals with, by employing the relation between Cauchy representa-

tion and the Fourier transform and properties of the former in L1-space, the investigation

of the Cauchy representation of integrable Boehmians as a natural extension of tempered

distributions, we have investigated Cauchy representation of tempered Boehmians. An

inversion formula is also proved.

1. Preliminaries

A relation between the Cauchy representation of the Fourier transform of the
functions in L2-space and a decomposition of the Fourier transform into two parts,
each of which gives an analytic function in a half plane, defines that the decomposed
transform is convergent for classes of functions larger than those in L2-space.

The paper is divided into three sections. In Section 1 we give some definitions
and results useful for our investigations. In Section 2 we have investigated the
Cauchy representation of integrable Boehmians, by using the relation between the
Cauchy representation and the Fourier transform and the properties of the former
in L1-space. Section 3 deals with the investigation of the Cauchy representation of
tempered Boehmians, and inversion formulae are proved for both the investigations,
in Sections 2 and 3.

In what follows, we mention basic properties of the Cauchy representation, some
definitions and few terminologies.

Property 1. Suppose f ∈ L2, g(ω) = F(f, ω) and ĝ(z) is the Cauchy representa-
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tion of g(z), where z = x+ iy. Then

ĝ(z) =



∫ ∞

0

f(t)eitzdt, y > 0

−
∫ 0

−∞
f(t)eitzdt, y < 0

(1)

Equation (1) remains true even if the assumption f ∈ L2 is replaced by f, g ∈ L1.

Property 2. Suppose g ∈ L2, f(t) = F−1(g, t) and f̂(z), z = x+ iy be the Cauchy
representation of f . Then

f̂(z) =


(2π)−1

∫ 0

−∞
g(ω)e−iωzdω, y > 0

−(2π)−1

∫ 0

−∞
g(ω)e−iωzdω, y < 0

(2)

Definition 1. A function f is called a tempered function (or a function of slow
growth or a slowly increasing function) if f is a continuous function and for some
α,

| f | = O(| t |)α). (3)

Definition 2. The generalized Fourier transform and the generalized inverse
Fourier transform of a tempered function f are defined and denoted, respectively,
as

F̂(f, z) =



∫ ∞

0

f(t)eitzdt, y > 0

−
∫ 0

−∞
f(t)eitzdt, y < 0

(4)

and

F̂−1(f, z) =


(2π)−1

∫ 0

−∞
f(t)e−itzdt, y > 0

−(2π)−1

∫ ∞

0

f(t)e−itzdt, y < 0

(5)

where z = x+ iy.

Property 3. F̂(f, z) and F̂−1(f, z), defined in equations (4) and (5) are analytic
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functions for y 6= 0. Following identities hold true between F̂(f, z) and the classical
Fourier transform :

F̂(f, x+ iε) = F(f(t)H(t)e−εt, x), ε > 0
and

F̂(f, x− iε) = −F(f(t)H(−t)e−εt, x), ε > 0

 , (6)

where H(t) is a positive function, which is convenient to consider in the proof of
inversion theorem and has a positive Fourier transform whose integral is easily
calculated. Therefore, we have

F̂(f, x+ iε)− F̂(f, x− iε) = F(e−ε|t|f(t), x) =
∫ ∞

−∞
e−ε|t|f(t)eitxdt. (7)

Property 4. Let f is a tempered function, then the generalized Fourier transform
of f has the property

〈F(f), ϕ〉 = lim
ε→0

∫ ∞

−∞
(F̂(f, x+ iε)− F̂(f, x− iε))ϕ(x) dx, (8)

for all ϕ ∈ S and ε > 0.

Property 5. For a given tempered function f , the inversion formula for the gen-
eralized Fourier transform F̂(f, z) has the property

(2π)−1

∫ ∞

−∞
(F̂(f, x+ iε)− F̂(f, x− iε))e−ixt dt = e−ε|t|f(t), ε > 0 (9)

and
lim
ε→0

F−1(F̂(f, x+ iε)− F̂(f, x− iε), t) = f(t), ε > 0. (10)

Property 6. Let T is a functional for the mth derivative of the tempered function
defined in L1, then the generalized Fourier transform of T is defined as F̂(T, z) =
(−iz)mF̂(f, z).

Property 7. Let T ∈ S′ and F̂(T, z) be a generalized Fourier transform of T .
Then F̂(t, z) is an analytic (Cauchy) representation of F̂(T ) in the sense, that

lim
ε→0

〈F̂(f, x+ iε)− F̂(f, x− iε), ϕ(x)〉 = 〈F(T ), ϕ〉, ϕ ∈ S, (11)

where S′ is the space of linear functional on S or the space of tempered distributions.

Definition 3. The generalized Fourier transform F(f, z) for a tempered function
f , for multi-variables is defined by∫ ∞

0

· · ·
∫ ∞

0

f(t)ei(t,z)dt, y1 > 0, · · · , yn > 0, (12)
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and

−
∫ 0

−∞

∫ ∞

0

· · ·
∫ ∞

0

f(t)ei(t,z)dt, y1 < 0, y2, y3, · · · , yn > 0, (13)

where zj = xj + iyj , j = 1, 2, 3, · · · .

Equations (12) and (13) can be expressed in the form

F̂(f, z) =
∫

En

f(t)ei〈t,z〉
n∏

j=1

(σjH(σjt)) dt, (14)

where σj = sgn(yj), sgn is the signum function, and {z : σ1y1, σ2y2, · · · , σnyn > 0}.
En is the n-dimensional linear space, over which the integral is defined. Further,
equation (14) can be written as

F̂(t, z) =
∫

En

f(t)eitz(σH(σt)) dt (15)

Also,
F−1(H(t)eitz, ω) = [2πi(ω − z)]−1, y > 0 (16)

F−1(H(−t)eitz, ω) = −[2πi(ω − z)]−1, y < 0 (17)

and

F
(

1
2πi(ω − z)

, t

)
= H(t)eitz, a.e. for y > 0 (18)

F
(

1
2πi(ω − z)

, t

)
= −H(−t)eitz, a.e. for y < 0. (19)

Following properties signify the equivalence of generalized Fourier transform
and Cauchy (analytic) representation of classical Fourier transform.

Property 8. Suppose f ∈ L1, F(f) ∈ L1 and F = F(f), then the Cauchy repre-
sentation of F̂ (z) by means of the Cauchy kernel is given by

F̂ (z) = F̂(f, z) (20)

f̂(z) = F̂(f, z), (21)

where z = x+ iy.

As a consequence of the Property 8, if f ∈ S and F denote F(f), then

F̂ (z) = F̂(f, z), y1, y2, · · · , yn 6= 0. (22)

Property 9. If f, g ∈ L1 and h(x) = (f ? g)(x), then

ĥ(z) =
∫ ∞

−∞
f(t)ĝ(z − t) dt
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=
∫ ∞

−∞
g(t)f̂(z − t) dt. (23)

This property is called the Cauchy representation of convolutions of functions be-
longing to L1-space.

Example 1. Using equations (16)-(19), we have

F
(

t

t− z
, ω

)
= 2πiH(ω)eiωz, y > 0

where H(ω) ∈ L1 and L2. Thus,

(2πiH(ω)eiωz) ? (2πiH(ω)eiωz) = 2πF((t− z)−2),

and therefore,
F((t− z)−2, ω) = −2πH(ω)ωeiωz, y > 0.

Similarly,

F((t− z)−n, ω) = 2π(i)nH(ω)
ωn−1

(n− 1)!
eiωz, y > 0.

Definition 4. For any tempered distribution space S, the space of linear functional

S′ on S, the space D of all infinitely differentiable functions on Rn with compact
support (A set K ⊂ X, a topological space, is called compact if every open cover
of K contains a finite subcover) and its dual D′ if S ∈ D′ and T ∈ E ′, then the
convolution of the distributions is defined by

S ? T = F−1(F(S) · F(T )) = 2πF(F−1(S) · F−1(T )). (24)

The space E(a, b) is the space of smooth functions on (a, b) and E ′(a, b), or simply
E ′, is the dual of the space E .

As a consequence of equation (24) or the Definition 4, if S ∈ S′ and T ∈ E ′,
then S ? T ∈ S′. Further, the convolution of the generalized Fourier transform is
given by

F̂(f ? g, z) =
{
F̂(f, z)F̂(g, z), y > 0

0, y < 0
(25)

Property 10. Let S, T ∈ S′ have support in the half axis {t : t > 0}. Then,

S ? T = lim
ε→0

F−1(F̂ (S, x+ iε)F̂(T, x+ iε)), (26)

where S ? T ∈ S′.
The proofs of all the properties mentioned in this section may be referred to [1].
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2. Cauchy representation for integrable Boehmians

In this section we investigate the Cauchy representation of integrable Boehmians
by using the relation between the Cauchy representation and the Fourier transform,
Properties 8 and 9, and employing the properties of the Cauchy representation for
function in L1-space, enumerated in Section 1. These properties indeed support
those of integrable Boehmians.

The Fourier transform for Boehmians has been defined independently by J.
Burzyk (through an oral communication) and by Nemzer [6]. Definition of Burzyk
is, indeed, general in nature and interestingly, in this definition, the Fourier trans-
form of a Boehmian is not necessarily a function (whereas the Fourier transform of
a tempered distribution is always a function). An exhaustive account of Boehmians
may be seen in [2].

Considering L1 as the space of complex valued Lebesgue integrable functions
on the real line R, the norm of a function f in L1 is given by

‖f‖ =
∫

R

| f(x) | dx.

If f, g ∈ L1, then the convolution f ? g is

(f ? g)(x) =
∫

R

f(u)g(x− u) du (27)

is an element of the space L1 and

‖f ? g‖ ≤ ‖f‖ · ‖g‖.

A sequence of continuous real functions δ ∈ L1 is called a delta sequence if

(i)
∫

R

δn(x)dx = 1, ∀ n ∈ N

(ii) ‖δn‖ < M , for some M ∈ R, ∀ n ∈ N .

(iii) lim
n→∞

∫
|x|>ε

| δn(x) | dx = 0, for each ε > 0.

If (ϕn) and (ψn) are delta sequence, the (ϕn ? ψn) is also a delta sequence. If
f ∈ L1 and (δn) is the delta sequence, then ‖(f ? δn)− f‖ → 0, as n→∞.

A pair of sequence (fn, ϕn) is called a quotient of sequences, and denoted by
fn/ϕn, fn ∈ L1 (n = 1, 2, · · · ) (ϕn) is a delta sequence, and fm ? ϕn = fn ? ϕm,
∀ m,n ∈ N . Two quotients of sequence fn/ϕn and gn/ψn are equivalent if fn?ψn =
gn ? ϕn, ∀ n ∈ N . The equivalence class of a quotient of sequences will be called
an integrable Boehmian. The space of all integrable Boehmians will be denoted by
BL1 . For convergence of Boehmians one may refer to [3], while the convergence and
properties of integrable Boehmians may be found in [4].
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Lemma 1. If [fn/δn] ∈ BL1 , then the sequence

f̂n(z) =
∫

R

f(t)eitz(σH(σt)) dt

converges uniformly on each compact set in R.

Proof. If (δn) is a delta sequence, then (δ̂n) converges on each compact set to the
constant function 1. Thus, for each compact set K, δ̂k > 0 on K, for almost all
k ∈ K and,

f̂n = f̂n
δ̂k

δ̂k
=

(fn ? δk)∧

δ̂k
=

(fk ? δn)∧

δ̂k
=

f̂k

δ̂k
δ̂n on K.

Indeed, the Cauchy representation of an integrable Boehmians F = [fn/δn] can
be defined as the limit of the sequence (f̂n) in the space of continuous function
on R. This proves that the Cauchy representation of an integrable Boehmian is a
continuous function. Thus the lemma is proved. �

Theorem 1. Let F,G ∈ BL1 . Then

(i) (λF )∧ = λF̂ , (for any complex number λ), and (F +G)∧ = F̂ + Ĝ.

(ii) (F ? G)∧ = F̂ Ĝ

(iii) F̂(f (m), z) = (−iz)mF̂(f, z)

(iv) if F̂ = 0, then F = 0

(v) if ∆− lim
n→∞

Fn = F , then F̂n → F̂ uniformly on each compact set.

Proof. Appealing to the Properties 8 and 9, the relation between the Cauchy repre-
sentation and the Fourier transform, the proofs of (i)-(iii) are obvious consequence.
Proof of (iv) can be completed by employing uniqueness theorem of the Fourier
transform (if f ∈ L1 and f̂(t) = 0 for all t ∈ R1, then f(x) = 0 a.e.) in L1 (or the
Theorem 2, that follows).
Now we prove the part (v):
We have

δ − lim
n→∞

Fn − F ⇒ F̂n → F̂

uniformly on each compact set.
Let (δn) be a delta sequence such that Fn ? δk, F ? δk ∈ L1, ∀ n, k ∈ N and

‖(Fn − F ) ? δk‖ → 0, as n→∞,

for each k ∈ N .
Let K be a compact set in R, then δ̂k > 0 on K for some k ∈ N . Since δ̂k is a
continuous function, we observe

F̂n · δ̂k → F̂ δ̂k
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uniformly on K. Since,

F̂n · δ̂k − F̂ · δk = ((Fn − F ) ? δk)∧

and
‖(Fn − F ) ? δk‖ → 0, as n→∞.

The theorem is thus completely proved. �

Let f ∈ L1 and from Properties 4,5 and 8 i.e. (equations (8),(9) and(21))

fn(t) = F−1(F̂(f, z)) = F−1(f̂(z)) (28)

=
1
2π

∫ ∞

−∞
f̂(z)eitz dt. (29)

Then the sequence (fn) converges to f in L1-norm. The details may be seen in [4].

Theorem 2. Let f ∈ BL1 and

fn(t) =
1
2π

∫ ∞

−∞
F̂ (z)eitz dt. (30)

Then δ − limn→∞ fn = F, and hence, also ∆− lim
n→∞

fn = F .

Proof. Let F = [gn/δn], k ∈ N . Then

(fn ? δk)(t) =
∫

R

fn(t− u)δk(u) du

i.e. =
1
2π

∫
R

∫ ∞

−∞
eit(z−u)F̂ (z)δk(u) dtdu,

=
1
2π

∫ ∞

−∞
eitzF̂ (z)δ̂k(t) dt

i.e. (fn?δk)(t) =
1
2π

∫ ∞

−∞
eitzF?δk(t) dt.

By Lemma 2, ‖fn ?δk−F ?δk‖ → 0, as n→∞. Since k being an arbitrary positive
integer, thus, δ − lim

n→∞
fn = F . This proves the theorem. �

3. Cauchy representation for tempered Boehmians

Since tempered Boehmians are the natural consequence of tempered distribu-
tions, indeed using the relation (15) we in this section, investigate the Cauchy
representation of tempered Boehmians, by following the terminologies of that of [5].

Let J be the space of slowly increasing infinitely differentiable complex-valued
functions on RN (f is called slowly increasing, if there exists a polynomial p, such
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that |f(x)| ≤ p(x), ∀ x ∈ RN ). D is the space of all infinitely differentiable complex
valued function on RN with compact support.

A pair of sequence (fn, ϕn) is called a quotient of sequences, fn/ϕn, if fn ∈ J ,
∀ n ∈ N , and {ϕn} is a delta sequence. If the function space is of slowly increasing
infinitely differentiable complex-valued functions, then the investigated space of
Boehmians consists of the tempered Boehmians and will be denoted by BJ .

Let F = [fn/ϕn] ∈ BJ . Partial derivatives of F are defined as

∂F

∂xn
=

[(
∂fn

∂xm
? ϕn

)
/(ϕn ? ϕn)

]
, (31)

where ((∂fn/∂xm) ? ϕn) is a slowly increasing function for every n ∈ N and
((∂fn/∂xm) ? ϕn)/(ϕn ? ϕn) is a quotient of sequence. Thus, the partial deriva-
tives of tempered Boehmians are tempered Boehmians.

Let f be an infinitely differentiable complex valued function on RN . If

sup
|α|≤m

sup
x∈RN

(1 + x2
1 + x2

2 + · · ·+ x2
N )

∣∣∣∣∂|α|f(x)
∂xα

∣∣∣∣ <∞ , (32)

for every non-negative m, then f is called a rapidly decreasing function, α =
(α1, · · · , αN ) is a multi-index, αN are non negative integers, | α |=| α1 | + · · ·+ |
αN |, and

∂|α|

∂xα
=

∂|α|

∂xα1
1 · · · ∂xαN

N

(33)

Let S(RN ) denote the space of all rapidly decreasing function on RN . A tem-
pered Boehmian F = [fn/ϕn] is called a rapidly decreasing Boehmian if fn ∈ S,
∀ n ∈ N . The space of all rapidly decreasing Boehmian is denoted by BS . If
F = [fn/ϕn] ∈ BJ and G = [gn/γn] ∈ BS , then the convolution F ?G is defined as

F ? G = [(fn ? gn)/(ϕn ? γn)], F ? G ∈ BJ . (34)

Let f/ϕ is a convolution quotient and
f

ϕ
is the general quotient. Let f ∈ J . The

relation between the Cauchy representation and the Fourier transform, as defined
in (15) and (21) and the Cauchy representation for tempered distributions and
convolution as defined in Property 9, Example 1, Definition 4 and Property 10 in
Section 1, satisfy properties of tempered Boehmians, which have been established
in the theorems those follow.

The Cauchy representation of tempered function f is denoted by f̂(z) and the
distribution of the tempered function is

〈f̂ , ϕ〉 = 〈f, ϕ̂〉, ϕ ∈ S, (35)
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where
ϕ̂(z) =

∫
ϕ(t)eitz(σH(σ(t)) dt. (36)

Theorem 3. If [fn/ϕn] ∈ BJ , then the sequence {f̂n} converges in D′. Moreover,
if [fn/ϕn] = [gn/γn] ∈ BJ , then the sequence {f̂n} and {ĝn} converge to the same
limit.

Proof. Let ϕ ∈ D, k ∈ N be such that ϕ̂ > 0 on the support of ϕ. Since

fn ? ϕm = fm ? ϕn, ∀ m,n ∈ N

and
f̂n ? φ̂m = f̂m ? φ̂n,

we have

f̂n(ϕ) = f̂n

(
ϕϕ̂k

ϕ̂k

)
= (f̂nϕ̂k)

(
ϕ

φ̂k

)
= (f̂kϕ̂n)

(
ϕ

ϕ̂k

)
= (f̂k)

(
ϕϕ̂n

ϕ̂k

)
.

Since the sequence
{
ϕϕ̂n

ϕ̂k

}
converges to

ϕ

ϕ̂k
in D, therefore, sequence {(f̂n, ϕ)}

converges in D. This proves that {f̂n} converges in D′. Further, assuming that
[fn/φn] = [gn/γn] ∈ BJ , and define

hn =
{
fn+1

2
? γn+1

2
, if n is odd

gn
2
? ϕn

2
, if n is even

and

δn =
{
ϕn+1

2
? γn+1

2
, if n is odd

ϕn
2
? γn

2
, if n is even.

Then [hn/δn] = [fn/φn] = [gn/γn]. Therefore, the sequence {ĥn} converges in D′.
Moreover,

lim
n→∞

ĥ2n−1(ϕ) = lim
n→∞

(fn ? γn)∧(ϕ)

= lim
n→∞

(f̂nγ̂n)(ϕ) = lim
n→∞

(f̂)(γ̂ϕ)

= lim
n→∞

f̂n(ϕ).
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Thus, {ĥk} and {f̂n} have the same limit. Similarly, it can be shown that the
sequence {ĥn} and {ĝn} will have the same limit. This completes the proof of the
theorem. �

Definition 5. The mapping from BJ into the dual space D′ can be defined by a
Cauchy representation F̂ of F , if F = [fn/ϕn] ∈ BJ and the limit of sequence {f̂n}
is in D′.

Theorem 4. Let F = [fn/ϕn] ∈ BJ and G = [gn/γn] ∈ BS. Then

(i) (∂F/∂xm)∧ = ixmF̂ ,

(ii) Ĝ is an infinitely differentiable function,

(iii) (F ? G)∧ = F̂ Ĝ and

(iv) F̂ ϕ̂n = f̂n, ∀ n ∈ N .

Proof. (i) Considering the left hand side, we write

(
∂F

∂xm

)∧

=
[(

∂fn

∂xm
? ϕn

)
/(ϕn ? ϕn)

]∧

= lim
n→∞

(
∂fn

∂xm
? ϕn

)∧

= lim
n→∞

ixmf̂ ϕ̂m = ixmF̂ . (37)

The proof of (i) is completed owing to the relation [fn/ϕn] = [(fn ? ϕn)/(ϕn ? ϕn),
and due to Theorem 3.

(ii) Let G = [gn/γn] ∈ BS and let U be a bounded open subset of RN . Then there
exists m ∈ N such that γ̂m > 0 on U , and

Ĝ = lim
n→∞

ĝn = lim
n→∞

ĝnγ̂m

γ̂m
= lim

n→∞

ĝmγ̂n

γ̂m

=
ĝm

γ̂m
lim

n→∞
γ̂n =

ĝm

γ̂m
, on U. (38)

Since ĝm, γ̂m ∈ S and γ̂m > 0 on U , Ĝ is an infinitely differentiable function on U .
The proof of (ii) is thus completed.

(iii) Let ϕ ∈ D. Then there exists m ∈ N such that γ̂m > 0 on the support of ϕ,
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and we have

(F ? G)∧(ϕ) = lim
n→∞

(fn ? gn)∧(ϕ)

= lim
n→∞

f̂n(ĝnϕ)

= lim
n→∞

(
ĝnγ̂mϕ

γ̂m

)
= Ĝ lim

n→∞
(f̂nγ̂n)(ϕ)

= Ĝ lim
n→∞

(fn ? γ̂n)∧(ϕ)

= (F̂ Ĝ)(ϕ)

i.e. (F ? G)∧(ϕ) = (F̂ Ĝ)(ϕ). (39)

The proof of (iii) is thus completed owing to reasons given for the proof of part (i).

(iv) Let ϕ ∈ D, ∀ m ∈ N

(F̂ ϕ̂m)(ϕ) = F̂ (ϕ̂mϕ)

= lim
n→∞

f̂n(ϕ̂mϕ)

= lim
n→∞

(f̂nϕ̂m)(ϕ)

i.e. (F̂ ϕ̂m)(ϕ) = f̂m(ϕ) = f̂m. (40)

The theorem is, thus, completely proved. �

Theorem 5. A distribution of the tempered function f is Cauchy representation
of a tempered Boehmian if and only if there exists a delta sequence {δn} such that
fδn is a tempered distribution, for every n ∈ N .

Proof. If F = [fn/φn] ∈ BJ and f = F̂ , then due to Theorem 4(iv),

fϕ̂n = F̂ ϕ̂n = f̂n.

Thus, fϕ̂n is a tempered distribution.

Let f ∈ D′ and {δn} be a delta sequence such that f δ̂n is a tempered distribution
for every n ∈ N , we have

F = [((f δ̂n)∨ ? δn)/(δn ? δn)], (41)

where (f δ̂n)∨ is the inverse generalized Fourier transform of the Cauchy represen-
tation of f δ̂n, the tempered distribution, so is (f δ̂n)∨. Indeed, F is a tempered
Boehmian and F̂ = f . This completes the proof. �

Theorem 6. Let F be a tempered Boehmian and F̂ = f . Then

F = [((f δ̂n)∨ ? δn)/(δn ? δn)], (42)
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where {δ}n be a delta sequence such that f δ̂n is a tempered distribution for every
n ∈ N .
Proof. If F = [fn/φn] ∈ BJ then appealing to the inverse formula (41). Let δ̂n = ϕn

which reduces equation (42) to F = [(fϕ̂n)∨/ϕn]. Hence the theorem is proved. �

Remark/Observation. The definition given by Burzyk is very general in nature
in the sense that the Fourier transform of a Boehmian is not necessarily a function
(whereas the Fourier transform of tempered distribution is a function). The rela-
tion between the generalized Fourier transform and Cauchy representation and the
properties given in Section 1, establish the fact that, the Cauchy representation of
a integrable Boehmians and tempered Boehmian is a distribution.
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