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ON HÖLDER ESTIMATES FOR CAUCHY TRANSFORMS ON

CONVEX DOMAINS IN C2

Ly Kim Ha

Abstract. The main purpose of this paper is to establish Hölder esti-

mates for the Cauchy transform in a class of finite/infinite type convex
domains in C2.

1. Introduction

Let Ω be a domain of the complex plane with piecewise smooth boundary
bΩ. The Cauchy transform on the complex plane is

C[u](z) =

∫
bΩ

u(ζ)
1

2πi

dζ

ζ − z

for z ∈ Ω. It maps L1-functions on bΩ to holomorphic functions in Ω. The term
1

2πi
dζ
ζ−z is called the Cauchy kernel on the complex plane, and it is universal. A

basic property of the kernel is that: for each ζ ∈ bΩ, the kernel is holomorphic
in z ∈ Ω̄ \ {ζ}. We list some well-known operator-theoretic properties of the
Cauchy transform:

(1) Let O(Ω) be the space of functions that are holomorphic in Ω, with the
topology of uniform convergence on compact subsets of Ω. Let σ be
the length measure on bΩ. Then C[u] ∈ O(Ω) for each f ∈ L1(bΩ, dσ).
Moreover, O : Lp(bΩ, dσ)→ O(Ω) is continuous for all 1 ≤ p ≤ ∞.

(2) Let E ⊂ C be a bounded set. For each 0 < α < 1, Λα(E) denotes the
standard Hölder class of order α on E. Then

C : Λα(bΩ)→ O(Ω) ∩ Λα(Ω)

is bounded. The boundedness also provides a sufficient condition so
that C[u] extends continuously on the closure Ω̄ when u is at least
Hölder continuous of order α.
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The question which we can ask is: Do the properties above hold in Cn, for
n ≥ 2? To answer this question, as the first step, we must construct a multi-
dimensional version for the Cauchy kernel. The simpliest and oldest answer
may be the Cauchy kernel on distinguished boundaries of polydiscs, that is
the product of n Cauchy kernels on C. For non-trivial domains, in 1932, A.
Weil introduced a Cauchy kernel for polynomial polyhedra in C2. Since then
there were some different versions for the multi-dimensional Cauchy kernel
constructed on particular domains. Unfortunately, there is not a canonical
Cauchy kernel on natural boundaries of arbitrary smooth domains in Cn.

In 1938 by Martinelli and in 1943 by Bochner, they did construct a differen-
tial form kernel which now we called the Bochner-Martinelli kernel K0(ζ, z) (see
[20, Section 1.2, page 148]). It can be considered as the first multi-dimensional
version for the Cauchy kernel on arbitrary smooth domains. However, this
kernel is not holomorphic in z. In 1959, in [9], J. Leray introduced the second
version for the Cauchy kernel for convex domains in Cn. This significant pa-
per marks the beginning of an interest that today is called Cauchy-Fantappiè
Theory. The Cauchy kernel in Cn was then developed by W. Koppelman in
[14, 15], by N. Kerzman and E. Stein in [16], by S. Chen in [3], by L. Lanzani
and E. Stein in [5]. E. Ligocka adapted the method by Kerzman-Stein to study
the unweighted and weighted Bergman projections in [10–12]. Recently, in the
series of perceptive workings [6–8] by Lanazani and Stein, this topic has been
advanced to consider different problems. The Cauchy kernel constructed via
Cauchy-Fantappiè Theory admits the holomorphicity as itself in C. However,
as M. Range wrote “we had to pay a price” in his book ([20]), the kernel is not
universal, it strictly depends on the boundary of the considered domains.

Now let Ω be a bounded convex domain in Cn with smooth boundary bΩ.
Let ρ be a defining function for Ω so that Ω = {z ∈ Cn : ρ(z) < 0} and
bΩ = {z ∈ Cn : ρ(z) = 0}, ∇ρ 6= 0 on bΩ.

Let us define, for ζ, z ∈ Ω:

(1.1) Φ(ζ, z) =

n∑
j=1

∂ρ

∂ζj
(ζ)(ζj − zj).

The convexity of Ω implies

Φ(ζ, z) =

n∑
j=1

∂ρ

∂ζj
(ζ)(ζj − zj) 6= 0

for all ζ ∈ bΩ and z ∈ Ω. Now we set

C(ζ, z) =
1

2πi

 n∑
j=1

∂ρ

∂ζj
(ζ)dζj

 1

Φ(ζ, z)
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for ζ ∈ bΩ, z ∈ Ω, which is a (1, 0)-form of ζ-variables. The Cauchy kernel for
the convex domain Ω is

Ω0 (C(ζ, z)) = C(ζ, z) ∧ (∂̄ζC(ζ, z))n−1,

where (∂̄ζC(ζ, z))n−1 is the (n−1) wedge product (∂̄ζC(ζ, z))∧· · ·∧(∂̄ζC(ζ, z)).

Theorem 1.1 ([20, Theorem 3.4, page 171]). For any u ∈ O(Ω) and z ∈ Ω,
we have

u(z) =

∫
bΩ

u(ζ)Ω0(C(ζ, z)).

By Stoke’s Theorem and ∂̄u = 0, we have

u(z) =

∫
Ω

u(ζ)∂̄ζΩ0(C(ζ, z)).

It is clear that when n = 1,

Ω0(C(ζ, z)) =
1

2πi

dζ

ζ − z
.

Example 1.2. Let Ω be the unit ball in Cn (n ≥ 2) and let ρ(z) =
∑n
j=1 |zj |2−

1 be a defining function of Ω. Then, ∂ρ
∂ζj

= ζ̄j for j = 1, . . . , n and

Φ(ζ, z) =

n∑
j=1

ζ̄j(ζj − zj) = |ζ|2 − 〈z, ζ〉

for z, ζ ∈ Ω̄. Then Φ(ζ, z) = 1 − 〈z, ζ〉 for ζ ∈ bΩ. By calculus for differential
forms, it follows that

∂̄ζΩ0(C(ζ, z)) =

(
i

2

)n
n!

πn
1

(1− 〈z, ζ〉)n+1

n∧
j=1

dζj ∧ dζ̄j .

It is quite different from the complex plane that a geometric condition on
boundaries must be required to obtain Hölder estimates for the Cauchy trans-
form

C[u](z) =

∫
bΩ

u(ζ)Ω0(C(ζ, z)),

where u ∈ L1(bΩ, dσ), and in this case dσ is the surface measure on bΩ.

Definition 1.3 ([4]). Let F : [0,∞)→ [0,∞) be a smooth, increasing function
such that

(1) F (0) = 0;

(2)
∫ δ

0
| lnF (r2)|dr <∞ for some small δ > 0;

(3) F (r)
r is increasing.

The function F with the properties above is supposed to be used throughout
this paper.
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Definition 1.4. A domain Ω is said to be admitting maximal type F at the
boundary point P ∈ bΩ if there are positive constants c, c′, such that, for all
ζ ∈ bΩ ∩B(P, c′) we have

ρ(z) & F (|z − ζ|2)

for all z ∈ B(ζ, c) with Φ(ζ, z) = 0.

It is to be noted that, by shrinking c > 0 if necessary, Corollary 1.13 in [18]
implies

ρ(z) > 0 for all z with Φ(ζ, z) = 0 and 0 < |z − ζ| < c.

Here the notationB(ζ, r) means the Euclidean ball centered at ζ of radius r > 0.
Also the notations . and & denote inequalities up to a positive constant, and
≈ means the combination of . and &.

Lemma 1.5 ([4]). Let Ω be a smoothly bounded, convex domain in Cn of
maximal type F at P ∈ bΩ. Then there are positive constants c and A such
that the support function Φ(ζ, z) satisfies the following estimate

(1.2) |Φ(ζ, z)| ≥ A(|ρ(z)|+ | Im Φ(ζ, z)|+ F (|z − ζ|2))

for every ζ ∈ bΩ ∩B(P, c), and z ∈ Ω, |z − ζ| < c.

The main purpose of this paper is the following theorem.

Theorem 1.6. Let Ω ⊂ C2 be a smoothly bounded, convex domain. Assume
that Ω admits a maximal type F at all boundary points, for some function F .
Then

(1) C[u] ∈ O(Ω) for all f ∈ L1(bΩ, dσ). Moreover, O : Lp(bΩ, dσ)→ O(Ω)
is continuous for all 1 ≤ p ≤ ∞.

(2) C : Λtα(bΩ)→ O(Ω) ∩ Λf (Ω) is bounded, for 0 < α < 1, where

f(d−1) :=

∫ d

0

(√
F ∗(t)

)α
t

dt

−1

,

and F ∗ be the inverse function of F .

Here, the spaces Λf are the f -Hölder spaces (first introduced by T. V. Khanh
in [13]). That is, let f be an increasing function such that limt→+∞ f(t) = +∞:

• Λf (Ω) consists all functions in L∞(Ω) such that

||u||Λf (Ω) = ||u||L∞(Ω,dV ) + sup
z,z+h∈Ω

f(|h|−1)|u(z + h)− u(z)|

finite.
• Λf (bΩ) consists all functions in L∞(bΩ) such that

||u||Λf (bΩ) = ||u||L∞(bΩ,dσ) + sup
x(·)∈C
0≤t≤1

f(t−1)|u(x(t))− u(x(0))
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finite, where C consists of C1-curves x(t) : t ∈ [0, 1] → x(t) ∈ bΩ and
|x′(t)| ≤ 1. That means Λf (bΩ) consists all complex-valued functions u
such that for each curve x(·) ∈ C, the function t 7→ u(x(t)) ∈ Λf ([0, 1]).

Example 1.7. Every strongly pseodoconvex domain is a domain admitting
maximal type F (t) = t (see [20] for details). Then C : Λtα → Λtα/2 is bounded
for 0 < α < 1. This was first proved by P. Ahern and R. Schneider in [2].

Example 1.8. On a smooth convex domain of finite type m in the sense of
Range ([18, 19]) in C2, C : Λtα → Λtα/m is bounded for 0 < α < 1. Moreover,
since each convex domain in C2 with real analytic boundary satisfies the finite
Range type m (see [17]), for some m ≥ 1, this boundedness is also true on such
domain ([1]).

Example 1.9. Let us define

Ω∞ = {z ∈ C2 : exp(1 + 2/s) exp

(
−1

|z1|s

)
+ |z2|2 < 1}

for 0 < s < 1/2. Then Ω∞ is a convex domain admitting maximal type
F (t) = exp

(
− 1

32ts

)
(see [21]). Therefore, C : Λtα(Ω∞)→ Λgα(Ω∞) is bounded,

for 2s < α ≤ 1, where

gα(t) =
1024s(α− 2s)

2s
(| ln t|)

α
2s−1

.

2. Proof of Theorem 1.6

The assertion (a) is straightforward from the definition of C[u]. In order to
prove (b), we need the general Hardy-Lilttewood Lemma which was proved by
Khanh in [13].

Lemma 2.1 (General Hardy-Littlewood Lemma). Let Ω be a smoothly bounded
domain in Rn and let ρ be a defining function of Ω. Let G : R+ → R+ be an

increasing function such that G(t)
t is decreasing and

∫ d
0
G(t)
t dt < ∞ for d > 0

small enough. If u ∈ C1(Ω) such that

|∇u(x)| . G(|ρ(x)|)
|ρ(x)|

for every x ∈ Ω,

then

f(|x− y|−1)|u(x)− u(y)| <∞

uniformly in x, y ∈ Ω, x 6= y, and where f(d−1) :=
(∫ d

0
G(t)
t dt

)−1

.

For each z ∈ Ω, let π(z) ∈ bΩ such that |z − π(z)| = dist(z, bΩ). Applying
Theorem 1.1 with u = 1,

0 = dz(1) =

∫
bΩ

dzΩ0(C(ζ, z)),
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and so ∫
bΩ

u(ζ)dzΩ0(C(ζ, z)) =

∫
bΩ

[u(ζ)− u(π(z))]dzΩ0(C(ζ, z)).

Then it follows that∣∣∣∣dz ∫
bΩ

u(ζ)Ω0(ζ, z)

∣∣∣∣ ≤ ∫
bΩ

|u(z)− u(π(z))||dzΩ0(ζ, z)|dσ(ζ).

Since u ∈ Λα(bΩ) and |z − π(z)| . |ζ − z|, we have∣∣∣∣dz ∫
bΩ

u(ζ)Ω0(ζ, z)

∣∣∣∣ ≤ ||u||Λα(bΩ)

∫
bΩ

||ζ − z|αdzΩ0(ζ, z)|dσ(ζ).

Rewrite the Cauchy kernel implicitly in C2 (see [3]), we have

Ω0(C(ζ, z)) = C(ζ, z) ∧ (∂̄ζC(ζ, z))

=

∑2
j=1

∂ρ
∂ζj

(ζ)dζj

Φ(ζ, z)
∧ ∂̄ζ

(∑2
j=1

∂ρ
∂ζj

(ζ)dζj

Φ(ζ, z)

)

=

(∑2
j=1

∂ρ
∂ζj

(ζ)dζj

)
∧
(∑2

j,k=1
∂2ρ

∂ζ̄k∂ζj
(ζ)dζ̄k ∧ dζj

)
Φ2(ζ, z)

=
∑

j0∈{1,2}

Aj0(ζ)

Φ2(ζ, z)
dζ1 ∧ dζ2 ∧ dζ̄j0 ,

where Aj0(ζ) is a polynomial involving in ζ of ∂ρ
∂ζ1

(ζ) and ∂ρ
∂ζ2

(ζ), and their first

derivatives. It is not difficult to show that

|dzΩ0(C(ζ, z))| . 1

|Φ(ζ, z)|3

for ζ ∈ bΩ, z ∈ Ω.
Combining these estimates, we obtain∣∣∣∣dz ∫

bΩ

u(ζ)Ω0(ζ, z)

∣∣∣∣ ≤ ||u||Λα(bΩ)

∫
bΩ

|ζ − z|α

|Φ(ζ, z)|3
dσ(ζ).

By the smoothness of Φ(z, ·) on bΩ \ B(π(z), c) (c is the constant in Lemma

1.5), it is sufficient to estimate
∫
bΩ∩B(π(z),c)

|ζ−z|α
|Φ(ζ,z)|3 dσ(ζ).

Let F ∗ be the inverse function of F . Then by Lemma 1.5, |ζ − z| .√
F ∗(|Φ(ζ, z)|), so∫

bΩ∩B(π(z),c)

|ζ − z|α

|Φ(ζ, z)|3
dσ(ζ) .

∫
bΩ∩B(π(z),c)

√
F ∗(|Φ(ζ, z)|)

α

|Φ(ζ, z)|3
dσ(ζ).

Since F (t)
t is increasing, for each 0 < α < 1,

√
F∗(s)

α

s ◦ F (t2) = tα

F (t2) =

t2

F (t2)
1

t2−α is decreasing. Hence, the chain rule in calculus yields that

√
F∗(t)

α

t
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is decreasing, so∫
bΩ∩B(π(z),c)

|ζ − z|α

|Φ(ζ, z)|3
dσ(ζ) .

√
F ∗(|ρ(z)|)

α

|ρ(z)|

∫
bΩ∩B(π(z),c)

dσ(ζ)

|Φ(ζ, z)|2
.

To estimate the last integral, we need a special coordinates, called to be
Henkin’s coordinates.

Lemma 2.2 ([20, Lemma V.3.4]). There exist positive constants M,a and
η ≤ ε, and, for each z with dist(z, bΩ) ≤ a, there is a smooth local coordinate
system (x1, x2, x3, x4) = x = x(ζ, z) on the ball B(z, η) such that we have

x1(ζ, z) = ρ(ζ),

x(z, z) = (ρ(z), 0, 0, 0),

x2(ζ, z) = Im(Φ(ζ, z)),

|x| < 1 for ζ ∈ B(z, η),

|JR(x(·, z))| ≤M and |det JR(x(·, z))| ≥ 1
M .

Therefore, using R2 polar coordinates for (x3, x4) and integrating in x2, we
have ∫

bΩ∩B(π(z),c)

|ζ − z|α

|Φ(ζ, z)|3
dσ(ζ)

.

√
F ∗(|ρ(z)|)

α

|ρ(z)|

∫
|(x2,x3,x4)|

dx2dx3dx4

(|ρ(z)|+ x2 + F (|(x3, x4)|)2)|(x3, x4)|

.

√
F ∗(|ρ(z)|)

α

|ρ(z)|

∫
|(x2,r)|<c

rdx2dr

(|ρ(z)|+ x2 + F (r2))r

.

√
F ∗(|ρ(z)|)

α

|ρ(z)|

∫ c

0

| lnF (r2)|dr︸ ︷︷ ︸
finite since Definition 1.3

.

√
F ∗(|ρ(z)|)

α

|ρ(z)|
.

The function

√
F∗(t)

α

t satisfies all conditions in the general Hardy-Littlewood
Lemma, see [13, page 527] for α = 1. For general 0 < α < 1, it is proved
similarly and we shall omit the details. Thus the proof of Theorem 1.6 is
complete.
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[10] E. Ligocka, The Hölder continuity of the Bergman projection and proper holomor-
phic mappings, Studia Math. 80 (1984), no. 2, 89–107. https://doi.org/10.4064/

sm-80-2-89-107

[11] , The regularity of the weighted Bergman projections, in Seminar on deformations
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