• 제목/요약/키워드: Cationic Polyelectrolyte

검색결과 49건 처리시간 0.026초

Platinum-Catalyzed and Ion-Selective Polystyrene Fibrous Membrane by Electrospinning and In-Situ Metallization Techniques

  • Hong, Seung-Hee;Lee, Sun-Ae;Nam, Jae-Do;Lee, Young-Kwan;Kim, Tae-Sung;Won, Sung-Ho
    • Macromolecular Research
    • /
    • 제16권3호
    • /
    • pp.204-211
    • /
    • 2008
  • A platinum-catalyzed polyelectrolyte porous membrane was prepared by solid-state compression of electrospun polystyrene (PS) fibers and in-situ metallization of counter-balanced ionic metal sources on the polymer surface. Using this ion-exchange metal-polymer composite system, fiber entangled pores were formed in the interstitial space of the fibers, which were surrounded by sulfonic acid sites ($SO_3^-$) to give a cation-selective polyelectrolyte porous bed with an ion exchange capacity ($I_{EC}$) of 3.0 meq/g and an ionic conductivity of 0.09 S/cm. The Pt loading was estimated to be 16.32 wt% from the $SO_3^-$ ions on the surface of the sulfonated PS fibers, which interact with the cationic platinum complex, $Pt(NH_3)_4^{2+}$, at a ratio of 3:1 based on steric hindrance and the arrangement of interacting ions. This is in good agreement with the Pt loading of 15.82 wt% measured by inductively coupled plasma-optical emission spectroscopy (ICP-OES). The Pt-loaded sulfonated PS media showed an ionic conductivity of 0.32 S/cm. The in-situ metallized platinum provided a nano-sized and strongly-bound catalyst in robust porous media, which highlights its potential use in various electrochemical and catalytic systems.

무세척 고분자전해질 다층흡착 처리된 중질탄산칼슘이 종이의 품질에 미치는 영향 (Effect of Ground Calcium Carbonate Modified by Washless Multilayering of Polyelectrolytes on Paper Quality)

  • 이제곤;임완희;심규정;이학래;윤혜정
    • 펄프종이기술
    • /
    • 제47권4호
    • /
    • pp.115-126
    • /
    • 2015
  • In this study, we investigated influence of ground calcium carbonate (GCC) modified by washless multilayering of polyelectrolytes on paper quality. Three layers of polyelectrolytes (cationic starch/anionic polyacrylamide/cationic starch) were formed on the surface of GCC using laboratory inline washless polyelectrolytes multilayering system, which was called inline LbL GCC. Base papers were prepared with untreated GCC or inline LbL GCC using a laboratory handsheet former. These handsheets were coated with rod coater, and then printed by black ink. Properties of base paper and fold crack of coated paper were evaluated. Base paper with inline LbL GCC showed much higher mechanical strength in terms of tensile index, strain, internal bond strength, and folding endurance. The fold crack of coated paper with inline LbL GCC occurred more frequently compared to coated paper with untreated GCC. This might be due to highly improved internal bond strength of base paper, which resulted in smaller delamination that played a role of stress dissipation. It would be recommended to design a proper coating layer in order to prevent fold crack.

Formation, Breakage and Reformation of Humic Flocs by Inorganic and Organic Coagulants

  • Kam, Sang-Kyu;Lee, Min-Gyu;Kang, Kyung-Ho;Xu, Mei-Lan
    • 한국환경과학회지
    • /
    • 제17권3호
    • /
    • pp.275-285
    • /
    • 2008
  • The floc formation, breakage and reformation of humic acid by inorganic (alum and PAC) and organic coagulants (cationic polyelectrolytes) at several conditions (pH, ionic strength and floc breakage time) were examined and compared among the coagulants at different conditions using a continuous optical monitoring method, with controlled mixing and stirring conditions. For alum, the shapes of formation, breakage and reformation curves at different pH (5 and 7) were different, but the shapes and the sizes of initial floc and reformed floc were nearly the same in the absence and presence of electrolytes at pH 7. For PAC, similar shapes of the curves were obtained at different pH and ionic strength, but the sizes were different, except for those of reformed flocs at different pH. However, for these coagulants, reformed flocs after floc breakage, occurred irreversibly for all the conditions used in this study. For organic coagulants, the time to attain the initial plateau floc size, the extent of floc strength at high shear rate and reversibility of reformed floes were different, depending floc formation mechanism. Especially, for the cationic polyelectrolyte forming humic flocs by charge neutralization or electrostatic patch effect mechanism, reformed flocs occurred reversibly, regardless of pH and floc breakage time, but occurred irreversibly in the presence of electrolytes.

양이온성 로진 에멀션의 응결현상이 도공층의 잉크흡수성에 미치는 영향 (Coagulation of Cationic Rosin Emulsion and its Effect on Ink Receptivity of Coating Layer)

  • 박철웅;이학래
    • 펄프종이기술
    • /
    • 제30권3호
    • /
    • pp.74-83
    • /
    • 1998
  • The phenomenon of decrease in sizing efficiency when the stock temperature is increased is well recognized as summer sizing, and this is believed to be caused by uneven distribution of sizing agents on paper surface most often incurred by coagulation of sizing agents. When unevenly sized paper is used as coating base stock, nonuniform consolidation of the coating layer may result, which, in turn, causes uneven distribution of binder on coating surface. This causes nonuniform ink absorption to produce print mottle. In this study the effects of simple or polymeric electrolytes, storage temperature and time on the coagulation of cationic dispersed rosin size were investigated using a turbidity measurement method which was verified to correlate well with the particle size of rosin emulsion or its coagulates. Handsheets sized with rosin dispersions coagulated under various conditions were prepared and their sizing degree and coated paper properties including gloss and ink density were examined. The relationship between the sizing nonuniformity of coated papers and its ink absorption property was evaluated. Turbidity of rosin emulsion increased as the storage temperature and time were increased. Addition of simple or polymeric electrolytes caused reduction in $zeta$ -potential of the rosin dispersion and accelerated the coagulation tendency substantially. Reversion of the $zeta$ -potential of rosin dispersion, however, did not occur when coagulation was induced with simple electrolytes. On the other hand, addition of an anionic polyelectrolyte reversed the $zeta$ -potential of the flocculated rosin dispersion. This indicated that electrical double layer compaction and bridging flocculation were coagulation mechanisms for simple and polymeric electrolytes, respectively. Sizing degree decreased as coagulation of rosin was increased. Paper gloss, ink gloss and ink density were increased when sizing degree of base stock was increased most probably due to prevention of base paper swelling and increased binder migration to coating surface. This suggested that uneven printing ink density occurred when uneven sizing development was induced by coagulation of rosin particles.

  • PDF

충전물의 Coagulation이 탈수 및 건조효율에 미치는 영향 (Effect of Coagulation of Filler Particles on the Dewatering and Drying of the Particles)

  • 윤병태;오세균;전양
    • 펄프종이기술
    • /
    • 제30권2호
    • /
    • pp.40-46
    • /
    • 1998
  • This study was aimed to investigate any improvement of dewatering and energy saving on the papermaking process when the various types of fillers were used, i.e., clay, talc and grounded calcium carbonate (GCC). Cationic polyelectrolyte and alum coagulants neutralized the surface charge of the filler particles and the filler particles were coagulated. The rates of dewatering and drying were investigated. The results indicated that clay tended to intense anion, while talc and GCC tended to anion trend nearly to neutrality. Clay and talc added with EPI-DMA, P-DADMAC and alum respectively as optimum levels showed a significant efficiency on the dewatering and the turbidity dissipation. However, the turbidity and dewatering rate of GCC decreased, when GCC was added with EPI-DMA and P-DADMAC respectively Drying rate of clay was increased when coagulant added. However drying rates of talc and GCC were not affected by coagulant, while the apprarent drying time of talc and GCC in the absence of any coagulant was shorter than the clay in the presence of a coagulant. The result confirmed that talc or GCC was more efficient than clay on the dewatering and drying, which is consistent with a general knowledge in the collodal science.

  • PDF

LbL 다층흡착에 의한 나노피브릴화 셀룰로오스의 표면 개질과 현탁액의 탈수성에 미치는 영향 (Surface Modification of Nanofibrillated Cellulose by LbL (Layer-by-Layer) Multilayering and its Effect on the Dewatering Ability of Suspension)

  • 심규정;윤혜정;안정언;이제곤;이혜윤;조연희
    • 펄프종이기술
    • /
    • 제46권1호
    • /
    • pp.46-55
    • /
    • 2014
  • In this study, we modified the surface of nanofibrillated cellulose (NFC) through LbL (Layer-by-Layer) multilayering process with polyelectrolytes and investigated the effects of the NFC modification on the charge of NFC surface and the dewatering ability of NFC suspension. The multilayering process was done onto NFC fibers using polydiallyldimethylammonium chloride (PDADMAC) and poly-sodium 4-styrene sulfonate (PSS) under different dosage and washing conditions. When the washing was carried out in every adsorption stage, the modified NFC had strong cationic or anionic charge depending on the type of polyelectrolyte in the outermost layer and the dewatering ability was not affected. In the case of no washing treatment or washing in the final adsorption stage, however, the zeta potential of NFC was close to an isoelectric point so that the dewatering ability increased remarkably. Low addition level of polyelectrolytes also showed the similar results. The mixing of NFC suspensions with opposite charge resulted in higher network strength and improved dewatering ability due to the flocculation.

Removal of textile dyes in wastewater using polyelectrolytes containing tetrazole groups

  • Caldera-Villalobos, Martin;Pelaez-Cid, Alejandra-Alicia;Martins-Alho, Miriam-Amelia;Herrera-Gonzalez, Ana-Maria
    • Korean Journal of Chemical Engineering
    • /
    • 제35권12호
    • /
    • pp.2394-2402
    • /
    • 2018
  • Textile dyes are some of the pollutants which have received the most attention because of the large volume of wastewater generated by the textile industry. Removal by means of adsorption is one of the most versatile alternatives to treat these effluents. Even though different adsorbents such as activated carbons and mineral materials have been proposed, polymeric adsorbents are a viable alternative. This work reports for the first time the use of polyelectrolyte PTZ and macroelectrolyte MTZ containing tetrazole groups as adsorbents useful in the textile dyes removal present in aqueous solutions and wastewater. Because of the anionic character of the tetrazole group, MTZ exhibits selective adsorption capabilities for cationic dyes of up to $156.25mg{\cdot}g^{-1}$. The kinetic study of the process of adsorption shows that PTZ and MTZ fit a pseudo second-order model. MTZ also shows utility as a flocculant agent in the treatment of wastewater containing dyes Indigo Blue and Reactive Black. The results showed that PTZ and MTZ may be used in the treatment of wastewater in a process of coagulation-flocculation followed by the treatment by adsorption. This two-stage treatment removed up to 95% of the dye present in the wastewater. As well as removing the dyes, the values for COD, suspended solids, pH, and color of the wastewater decreased, thus significantly improving its quality.

슬러리 양돈분뇨의 최적 고액분리 방안 연구 (A Practical Study on the Solid-Liquid Separation of the Swine Wastewater from Slurry Feedlot)

  • 박성균;최재길;정윤진
    • 유기물자원화
    • /
    • 제8권2호
    • /
    • pp.60-70
    • /
    • 2000
  • 현재 국내에서 처리에 어려움을 겪고 있으며 사회적으로 문제가 되고 있는 양돈 분뇨의 처리중 생물학적 처리를 위한 전처리 공정의 일환으로 비육돈 슬러리 돈사에서 발생하는 분뇨를 대상으로 고액분리에 관한 연구를 수행하였다. 최적의 고액 분리를 위하여 적정 응집제 선정 및 첨가량을 도출하였으며, 현장 규모의 고액 분리 장치를 통하여 규모별 최적 고액 분리 공정을 도출하였다. 이 결과 탈수성 개량을 위한 적정 응집제로는 Polyarcylamide 계열의 양이온 고분자 응집제인 E-851이 적합하였으며, 단위 고형물당 0.24~0.6%가 요구되었다. 본 연구에서 검토된 공정으로는 Mesh Screen, Drum Screen, Cyclone Drum Filter, Screw Press, 고속 Screw Decanter, 저속 Screw Decanter 및 DAF 공정을 조합하여 검토하였다. 그 결과 최적 공정으로는 중 소규모의 1차 고액 분리 공정으로는 Screw Press(응집제 첨가)와 대규모 및 공공처리장 규모에서는 저속 Screw Decanter(응집제 첨가)가 적정 공정으로 도출되었으며 2차 처리 공정으로는 가압부상조가 가장 안정적인 것으로 나타났다. 한편 고액 분리 유무에 따라 수분조절제 및 유기물 부하량 감소는 각각 94.8, 84.7%로 나타났으며 슬러리 양돈분뇨의 정화방안으로는 고액분리가 반드시 필요한 것으로 나타났다.

  • PDF

이온성 상호작용을 통한 키토산-폴리아크릴산 Polyplex의 형성 및 이를 이용한 하이드로젤 특성 분석 (Electrostatic Formation of Chitosan-Polyacrylate Polyplex for the Preparation of Cross-Linked Hydrogel Particles)

  • 김여진;권지영;이상민
    • 대한화학회지
    • /
    • 제62권1호
    • /
    • pp.24-29
    • /
    • 2018
  • 대표적인 양이온성 폴리사카라이드인 키토산은 생체 친화적인 특성으로 인하여 식품 및 의약품으로의 다양한 응용성이 제시되고 있으나, 용액의 pH에 따른 급격한 용해도 변화로 인하여 실제적인 사용에 많은 제약이 따른다. 본 연구에서는 양이온성 키토산 고분자체와 음이온성 고분자 전해질인 PAA의 이온성 상호작용을 이용하여 두 고분자 전해질의 구성 비율 및 용액의 pH에 따른 polyplex 형성 과정을 관찰하였다. 특히, 두 고분자체의 조성 비율에 따라 나타나는 입자 표면의 전하량은 입자 간정전기적 반발력을 제공하여 균일한 입자 크기와 높은 콜로이드 안정성을 제공하였으며, 이와 같이 안정화된 polyplex 입자는 추가적인 가교화 반응을 통하여 하이드로젤 입자로의 형성이 가능하였다. 두 고분자 전해질의 부분적인 교차 결합으로 형성된 하이드로젤 입자 내부의 acryl amide 작용기는 특징적인 저임계 용액 온도(LCST)를 나타냄으로써 입자의 온도에 따른 수화 작용에 차이를 보이며 그에 따른 입자의 수력학적 직경 변화가 관찰되어 온도에 따른 하이드로젤 입자의 가역적인 팽윤 작용이 관찰되었다. 이와 같은 하이드로젤 입자는 생리활성적인 환경에서 제한된 용해도를 보이는 키토산의 응용성을 한 층 더 높일 수 있을 것으로 기대된다.