DOI QR코드

DOI QR Code

LbL 다층흡착에 의한 나노피브릴화 셀룰로오스의 표면 개질과 현탁액의 탈수성에 미치는 영향

Surface Modification of Nanofibrillated Cellulose by LbL (Layer-by-Layer) Multilayering and its Effect on the Dewatering Ability of Suspension

  • 심규정 (서울대학교 농업생명과학대학 산림과학부) ;
  • 윤혜정 (서울대학교 농업생명과학대학 산림과학부) ;
  • 안정언 (서울대학교 농업생명과학대학 산림과학부) ;
  • 이제곤 (서울대학교 농업생명과학대학 산림과학부) ;
  • 이혜윤 (서울대학교 농업생명과학대학 산림과학부) ;
  • 조연희 (서울대학교 농업생명과학대학 산림과학부)
  • Sim, Kyujeong (Dept. of Forest Sciences, Seoul National University) ;
  • Youn, Hye Jung (Dept. of Forest Sciences, Seoul National University) ;
  • Ahn, Jungeon (Dept. of Forest Sciences, Seoul National University) ;
  • Lee, Jegon (Dept. of Forest Sciences, Seoul National University) ;
  • Lee, Hyeyoon (Dept. of Forest Sciences, Seoul National University) ;
  • Jo, Yeonhee (Dept. of Forest Sciences, Seoul National University)
  • 투고 : 2014.02.07
  • 심사 : 2014.02.18
  • 발행 : 2014.02.28

초록

In this study, we modified the surface of nanofibrillated cellulose (NFC) through LbL (Layer-by-Layer) multilayering process with polyelectrolytes and investigated the effects of the NFC modification on the charge of NFC surface and the dewatering ability of NFC suspension. The multilayering process was done onto NFC fibers using polydiallyldimethylammonium chloride (PDADMAC) and poly-sodium 4-styrene sulfonate (PSS) under different dosage and washing conditions. When the washing was carried out in every adsorption stage, the modified NFC had strong cationic or anionic charge depending on the type of polyelectrolyte in the outermost layer and the dewatering ability was not affected. In the case of no washing treatment or washing in the final adsorption stage, however, the zeta potential of NFC was close to an isoelectric point so that the dewatering ability increased remarkably. Low addition level of polyelectrolytes also showed the similar results. The mixing of NFC suspensions with opposite charge resulted in higher network strength and improved dewatering ability due to the flocculation.

키워드

참고문헌

  1. Herrick F.W., Casebier, R.L., Hamilton, J.K., and Sandberg, K.R., Microfibrillated cellulose: morphology and accessibility, J. Appl. Polym. Sci.: Appl. Polym. Symp., 37:797-813 (1983).
  2. Turbak, A.F., Snyder, F.W., and Sandberg, K.R., Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential, J. Appl. Polym. Sci.: Appl. Polym. Symp., 37:815-827 (1983).
  3. Aulin, C., Netrval, J., Wagberg, L., and Lindstrom, T., Aerogels from nanofibrillated cellulose with tunable oleophobicity, Soft Matter, 6(14):3298-3305 (2010). https://doi.org/10.1039/c001939a
  4. Zimmermann, T., Pohler, E., and Geiger, T., Cellulose fibrils for polymer reinforcement, Adv. Eng. Mater. 6:754-761 (2004). https://doi.org/10.1002/adem.200400097
  5. Abe, K., Iwamoto, S., and Yano, H., Obtaining cellulose nanofibers with a uniform width of 15 nm from wood, Biomacromolecules 8:3276-3278 (2007). https://doi.org/10.1021/bm700624p
  6. Sim, K., Ryu, J., and Youn, H.J., Effect of the number of passes through grinder on the pore characteristics of nanofibrillated cellulose mat, Journal of Korea TAPPI 45(1): 35-41 (2013). https://doi.org/10.7584/ktappi.2013.45.1.035
  7. Taniguchi, T., and Okamura, K., New films produced from microfibrillated natural fibres, Polym. Int. 47:291-294 (1998). https://doi.org/10.1002/(SICI)1097-0126(199811)47:3<291::AID-PI11>3.0.CO;2-1
  8. Hubbe, M.A., Rojas, O.J., Lucia, L.A., and Sain, M., Cellulosic nanocomposites: a review, Bioresources 3:929-980 (2008).
  9. Siqueira, G., Bras, J., and Dufresne, A., Cellulosic bionanocomposites: a review of preparation, properties, and applications, Polymers 2:728-765 (2010). https://doi.org/10.3390/polym2040728
  10. Siro, I., and Plackett, D., Microfibrillated cellulose and new nanocomposite materials: a review, Cellulose 17:459-494 (2010). https://doi.org/10.1007/s10570-010-9405-y
  11. Aulin, C., Gallstedt, M., and Lindstrom, T., Oxygen and oil barrier properties of microfibrillated cellulose films and coatings, Cellulose 17:559-574 (2010). https://doi.org/10.1007/s10570-009-9393-y
  12. Syverud, K., and Stenius, P., Strength and barrier properties of MFC films, Cellulose 16:75-85 (2009). https://doi.org/10.1007/s10570-008-9244-2
  13. Fukuzumi, H., Saito, T., Iwata, T., Kumamoto, Y., and Isogai, A., Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation, Biomacromolecules 10:162-165 (2009). https://doi.org/10.1021/bm801065u
  14. Okahisa, Y., Yoshida, A., Miyaguchi, S., and Yano, H., Optically transparent wood-cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays, Compos. Sci. Technol. 69:1958-1961 (2009). https://doi.org/10.1016/j.compscitech.2009.04.017
  15. Zheng, G.Y., Cui, Y., Karabulut, E., Wagberg, L., Zhu, H., and Hu, L., Nanostructured paper for flexible energy and electronic devices, Mrs Bulletin 38(4): 320-325 (2013). https://doi.org/10.1557/mrs.2013.59
  16. Iwatake, A., Nogi, M., and Yano, H., Cellulose nanofiber-reinforced polylactic acid, Compos. Sci. Technol. 68:2103-2106 (2008). https://doi.org/10.1016/j.compscitech.2008.03.006
  17. Tingaut, P., Zimmermann, T., and Lopez-Suevos, F., Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose, Biomacromolecules 11:454-464 (2010). https://doi.org/10.1021/bm901186u
  18. Bulota, M., Kreitsmann, K., Hughes, M., and Paltakari, J., Acetylated microfibrillated cellulose as a toughening agent in poly(lactic acid), J. Appl. Polym. Sci. 126:E448-E457 (2012).
  19. Gousse, C., Chanzy, H., Cerrada, M.L., and Fleury, E., Surface silylation of cellulose microfibrils: preparation and rheological properties, Polymer 45:1569-1575 (2004). https://doi.org/10.1016/j.polymer.2003.12.028
  20. Isogai, A., Saito, T., and Fukuzumi, H., TEMPO-oxidized cellulose nanofibers, Nanoscale 3:71-85 (2011). https://doi.org/10.1039/c0nr00583e
  21. Olszewska, A., Eronen, P., Johansson, L.-S., Malho, J.-M., Ankerfors, M., Lindstrom, T., Ruokolainen, J., Laine, J., and Osterberg, M., The behaviour of cationic nanofibrillar cellulose in aqueous media, Cellulose 18:1213-1226 (2011). https://doi.org/10.1007/s10570-011-9577-0
  22. Decher, G., Hong, J.D., and Schmitt, J., Buildup of ultrathin multilayer films by a self-assembly process. III : Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces, Thin solid film 210(1-2):831-835 (1992).
  23. Eriksson, M., Notley, S.M., and Wagberg, L., The influence on paper strength properties when building multilayers of weak polyelectrolytes onto wood fibres, J. Colloid. Interf. Sci. 292:38-45 (2005). https://doi.org/10.1016/j.jcis.2005.05.058
  24. Lee, S., Ryu, J., Chin, S.M., and Youn, H.J., Effect of polyelectrolyte types in Layer-by-Layer multilayering treatment on physical properties of paper, Journal of Korea TAPPI 41(4):65-72 (2009).
  25. Lee, J., Ryu, J., and Youn, H.J., Conductive paper through LbL multilayering with conductive polymer: dominant factors to increase electrical conductivity, Cellulose 19(6):2153-2164 (2012). https://doi.org/10.1007/s10570-012-9781-6

피인용 문헌

  1. Evaluation of Dewatering of Cellulose Nanofibrils Suspension and Effect of Cationic Polyelectrolyte Addition on Dewatering vol.46, pp.6, 2014, https://doi.org/10.7584/ktappi.2014.46.6.078