Browse > Article
http://dx.doi.org/10.7584/ktappi.2014.46.1.046

Surface Modification of Nanofibrillated Cellulose by LbL (Layer-by-Layer) Multilayering and its Effect on the Dewatering Ability of Suspension  

Sim, Kyujeong (Dept. of Forest Sciences, Seoul National University)
Youn, Hye Jung (Dept. of Forest Sciences, Seoul National University)
Ahn, Jungeon (Dept. of Forest Sciences, Seoul National University)
Lee, Jegon (Dept. of Forest Sciences, Seoul National University)
Lee, Hyeyoon (Dept. of Forest Sciences, Seoul National University)
Jo, Yeonhee (Dept. of Forest Sciences, Seoul National University)
Publication Information
Journal of Korea Technical Association of The Pulp and Paper Industry / v.46, no.1, 2014 , pp. 46-55 More about this Journal
Abstract
In this study, we modified the surface of nanofibrillated cellulose (NFC) through LbL (Layer-by-Layer) multilayering process with polyelectrolytes and investigated the effects of the NFC modification on the charge of NFC surface and the dewatering ability of NFC suspension. The multilayering process was done onto NFC fibers using polydiallyldimethylammonium chloride (PDADMAC) and poly-sodium 4-styrene sulfonate (PSS) under different dosage and washing conditions. When the washing was carried out in every adsorption stage, the modified NFC had strong cationic or anionic charge depending on the type of polyelectrolyte in the outermost layer and the dewatering ability was not affected. In the case of no washing treatment or washing in the final adsorption stage, however, the zeta potential of NFC was close to an isoelectric point so that the dewatering ability increased remarkably. Low addition level of polyelectrolytes also showed the similar results. The mixing of NFC suspensions with opposite charge resulted in higher network strength and improved dewatering ability due to the flocculation.
Keywords
Nanofibrillated cellulose; LbL multilayering; polyelectrolytes; zeta potential; dewatering; flocculation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Herrick F.W., Casebier, R.L., Hamilton, J.K., and Sandberg, K.R., Microfibrillated cellulose: morphology and accessibility, J. Appl. Polym. Sci.: Appl. Polym. Symp., 37:797-813 (1983).
2 Turbak, A.F., Snyder, F.W., and Sandberg, K.R., Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential, J. Appl. Polym. Sci.: Appl. Polym. Symp., 37:815-827 (1983).
3 Aulin, C., Netrval, J., Wagberg, L., and Lindstrom, T., Aerogels from nanofibrillated cellulose with tunable oleophobicity, Soft Matter, 6(14):3298-3305 (2010).   DOI   ScienceOn
4 Taniguchi, T., and Okamura, K., New films produced from microfibrillated natural fibres, Polym. Int. 47:291-294 (1998).   DOI
5 Zimmermann, T., Pohler, E., and Geiger, T., Cellulose fibrils for polymer reinforcement, Adv. Eng. Mater. 6:754-761 (2004).   DOI   ScienceOn
6 Abe, K., Iwamoto, S., and Yano, H., Obtaining cellulose nanofibers with a uniform width of 15 nm from wood, Biomacromolecules 8:3276-3278 (2007).   DOI   ScienceOn
7 Sim, K., Ryu, J., and Youn, H.J., Effect of the number of passes through grinder on the pore characteristics of nanofibrillated cellulose mat, Journal of Korea TAPPI 45(1): 35-41 (2013).   과학기술학회마을   DOI   ScienceOn
8 Hubbe, M.A., Rojas, O.J., Lucia, L.A., and Sain, M., Cellulosic nanocomposites: a review, Bioresources 3:929-980 (2008).
9 Siqueira, G., Bras, J., and Dufresne, A., Cellulosic bionanocomposites: a review of preparation, properties, and applications, Polymers 2:728-765 (2010).   DOI
10 Aulin, C., Gallstedt, M., and Lindstrom, T., Oxygen and oil barrier properties of microfibrillated cellulose films and coatings, Cellulose 17:559-574 (2010).   DOI
11 Syverud, K., and Stenius, P., Strength and barrier properties of MFC films, Cellulose 16:75-85 (2009).   DOI
12 Fukuzumi, H., Saito, T., Iwata, T., Kumamoto, Y., and Isogai, A., Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation, Biomacromolecules 10:162-165 (2009).   DOI   ScienceOn
13 Okahisa, Y., Yoshida, A., Miyaguchi, S., and Yano, H., Optically transparent wood-cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays, Compos. Sci. Technol. 69:1958-1961 (2009).   DOI   ScienceOn
14 Zheng, G.Y., Cui, Y., Karabulut, E., Wagberg, L., Zhu, H., and Hu, L., Nanostructured paper for flexible energy and electronic devices, Mrs Bulletin 38(4): 320-325 (2013).   DOI
15 Iwatake, A., Nogi, M., and Yano, H., Cellulose nanofiber-reinforced polylactic acid, Compos. Sci. Technol. 68:2103-2106 (2008).   DOI   ScienceOn
16 Isogai, A., Saito, T., and Fukuzumi, H., TEMPO-oxidized cellulose nanofibers, Nanoscale 3:71-85 (2011).   DOI   ScienceOn
17 Tingaut, P., Zimmermann, T., and Lopez-Suevos, F., Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose, Biomacromolecules 11:454-464 (2010).   DOI   ScienceOn
18 Bulota, M., Kreitsmann, K., Hughes, M., and Paltakari, J., Acetylated microfibrillated cellulose as a toughening agent in poly(lactic acid), J. Appl. Polym. Sci. 126:E448-E457 (2012).
19 Gousse, C., Chanzy, H., Cerrada, M.L., and Fleury, E., Surface silylation of cellulose microfibrils: preparation and rheological properties, Polymer 45:1569-1575 (2004).   DOI
20 Olszewska, A., Eronen, P., Johansson, L.-S., Malho, J.-M., Ankerfors, M., Lindstrom, T., Ruokolainen, J., Laine, J., and Osterberg, M., The behaviour of cationic nanofibrillar cellulose in aqueous media, Cellulose 18:1213-1226 (2011).   DOI
21 Decher, G., Hong, J.D., and Schmitt, J., Buildup of ultrathin multilayer films by a self-assembly process. III : Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces, Thin solid film 210(1-2):831-835 (1992).
22 Lee, S., Ryu, J., Chin, S.M., and Youn, H.J., Effect of polyelectrolyte types in Layer-by-Layer multilayering treatment on physical properties of paper, Journal of Korea TAPPI 41(4):65-72 (2009).   과학기술학회마을
23 Lee, J., Ryu, J., and Youn, H.J., Conductive paper through LbL multilayering with conductive polymer: dominant factors to increase electrical conductivity, Cellulose 19(6):2153-2164 (2012).   DOI
24 Eriksson, M., Notley, S.M., and Wagberg, L., The influence on paper strength properties when building multilayers of weak polyelectrolytes onto wood fibres, J. Colloid. Interf. Sci. 292:38-45 (2005).   DOI   ScienceOn
25 Siro, I., and Plackett, D., Microfibrillated cellulose and new nanocomposite materials: a review, Cellulose 17:459-494 (2010).   DOI