Browse > Article
http://dx.doi.org/10.5012/jkcs.2018.62.1.24

Electrostatic Formation of Chitosan-Polyacrylate Polyplex for the Preparation of Cross-Linked Hydrogel Particles  

Kim, Yeojin (Department of Chemistry, The Catholic University of Korea)
Kwon, Ji-Yeong (Department of Chemistry, The Catholic University of Korea)
Lee, Sang-Min (Department of Chemistry, The Catholic University of Korea)
Publication Information
Abstract
Despite the great potential for the versatile applications in food industry and medical area, chitosan as a biocompatible cationic polysaccharide has suffered from the limited solubility under physiological condition. Herein, we demonstrated the electrostatic formation of chitosan-based polyplex particles, counterbalanced by polyacrylate as an anionic polyelectrolyte. The resulting polyplex exhibited pH- and composition-dependent changes in their surface charges as measured by zeta potential, which can be employed to provide the interparticle repulsive forces for enhanced colloidal stability in homogeneous solution. Subsequently, amide coupling between the acrylates and glucosamine residues of chitosan inside the polyplex further generated the hydrogel particles, which showed the temperature-sensitive swelling property. This aspect can be attributed to the partial formation of acryl amide residues, which have been generally known to possess the lower critical solution temperature (LCST).
Keywords
Chitosan; Polyacrylate; Polyplex; Hydrogel;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kim, J.-H.; Kim, Y.-S.; Park, K.; Lee, S.; Nam, H. Y.; Min, K. H.; Jo, H. G.; Park, J. H.; Choi, K.; Jeong, S. Y.; Park, R.-W.; Kim, I.-S.; Kim, K.; Kwon, I. C. J. Controlled Release 2008, 127, 41.   DOI
2 Zhao, Z.; He, M.; Yin, L.; Bao, J.; Shi, L.; Wang, B.; Tang, C.; Yin, C. Biomacromolecules 2009, 10, 565.   DOI
3 Aktas, Y.; Yemisci, M.; Andrieux, K.; Gursoy, R. N.; Alonso, M. J.; Fernandez-Megia, E.; Novoa-Carballal, R.; Quinoa, E.; Riguera, R.; Sargon, M. F.; Celik, H. H.; Demir, A. S.; Hincal, A. A.; Dalkara, T.; Capan, Y.; Couvreur, P. Bioconjugate Chem. 2005, 16, 1503.   DOI
4 Bodnar, M.; Hartmann, J. F.; Borbely, J. Biomacromolecules 2005, 6, 2521.   DOI
5 Bhattarai, N.; Ramay, H. R.; Gunn, J.; Matsen, F. A.; Zhang, M. J. Controlled Release 2005, 103, 609.   DOI
6 Jang, J. H.; Choi, Y. M.; Choi, Y. Y.; Joo, M. K.; Park, M. H.; Choi, B. G.; Kang, E. Y.; Jeong, B. J. Mater. Chem. 2011, 21, 5484.   DOI
7 Prego, C.; Torres, D.; Fernandez-Megia, E.; Novoa-Carballal, R.; Quinoa, E.; Alonso, M. J. J. Controlled Release 2006, 111, 299.   DOI
8 Chen, C.-K.; Wang, Q.; Jones, C. H.; Yu, Y.; Zhang, H.; Law, W.-C.; Lai, C. K.; Zeng, Q.; Prasad, P. N.; Pfeifer, B. A.; Cheng, C. Langmuir 2014, 30, 4111.   DOI
9 Mammen, M.; Choi, S.-K.; Whitesides, G. M. Angew. Chem. Int. Ed. 1998, 37, 2754.   DOI
10 Xu, P.; Bajaj, G.; Shugg, T.; Van Alstine, W. G.; Yeo, Y. Biomacromolecules 2010, 11, 2352.   DOI
11 Nayak, S.; Lyon, L. A. Angew. Chem. Int. Ed. 2005, 44, 7686.   DOI
12 Lee, S.-M.; Nguyen, S. T. Macromolecules 2013, 46, 9169.   DOI
13 Lee, S.-M.; Lee, O.-S.; O'Halloran, T. V.; Schatz, G. C.; Nguyen, S. T., ACS Nano 2011, 5, 3961.   DOI
14 Kumar, M. N. V. R.; Muzzarelli, R. A. A.; Muzzarelli, C.; Sashiwa, H.; Domb, A. J. Chem. Rev. 2004, 104, 6017.   DOI
15 Desbrieres, J. Biomacromolecules 2002, 3, 342.   DOI