• Title/Summary/Keyword: Cathode Lithium ion Battery

Search Result 231, Processing Time 0.034 seconds

Semi-interpenetrating Solid Polymer Electrolyte for LiCoO2-based Lithium Polymer Batteries Operated at Room Temperature

  • Nguyen, Tien Manh;Suk, Jungdon;Kang, Yongku
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.250-255
    • /
    • 2019
  • Poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) show promise for improving the lithium ion battery safety. However, due to oxidation of the PEO group and corrosion of the Al current collector, PEO-based SPEs have not previously been effective for use in $LiCoO_2$ (LCO) cathode materials at room temperature. In this paper, a semi-interpenetrating polymer network (semi-IPN) PEO-based SPE was applied to examine the performance of a LCO/SPE/Li metal cell at different voltage ranges. The results indicate that the SPE can be applied to LCO-based lithium polymer batteries with high electrochemical performance. By using a carbon-coated aluminum current collector, the Al corrosion was mostly suppressed during cycling, resulting in improvement of the cell cycle stability.

A Study on the Vanadium Oxide Thin Films as Cathode for Lithium Ion Battery Deposited by RF Magnetron Sputtering (RF 마그네트론 스퍼터링으로 증착된 리튬 이온 이차전지 양극용 바나듐 옥사이드 박막에 관한 연구)

  • Jang, Ki-June;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.80-85
    • /
    • 2019
  • Vanadium dioxide is a well-known metal-insulator phase transition material. Lots of researches of vanadium redox flow batteries have been researched as large scale energy storage system. In this study, vanadium oxide($VO_x$) thin films were applied to cathode for lithium ion battery. The $VO_x$ thin films were deposited on Si substrate($SiO_2$ layer of 300 nm thickness was formed on Si wafer via thermal oxidation process), quartz substrate by RF magnetron sputter system for 60 minutes at $500^{\circ}C$ with different RF powers. The surface morphology of as-deposited $VO_x$ thin films was characterized by field-emission scanning electron microscopy. The crystallographic property was confirmed by Raman spectroscopy. The optical properties were characterized by UV-visible spectrophotometer. The coin cell lithium-ion battery of CR2032 was fabricated with cathode material of $VO_x$ thin films on Cu foil. Electrochemical property of the coin cell was investigated by electrochemical analyzer. As the results, as increased of RF power, grain size of as-deposited $VO_x$ thin films was increased. As-deposited thin films exhibit $VO_2$ phase with RF power of 200 W above. The transmittance of as-deposited $VO_x$ films exhibits different values for different crystalline phase. The cyclic performance of $VO_x$ films exhibits higher values for large surface area and mixed crystalline phase.

Characteristics of LiMn2O4 Cathode Material Prepared by Precipitation-Evaporation Method for Li-ion Secondary Battery (침전-증발법에 의해 제조된 리튬이온 2차 전지용 LiMn2O4 양극재료의 특성)

  • Kim, Guk-Tae;Yoon, Duck-Ki;Shim, Young-Jae
    • Korean Journal of Materials Research
    • /
    • v.12 no.9
    • /
    • pp.712-717
    • /
    • 2002
  • New wet chemical method so called precipitation-evaporation method was suggested for preparing spinel structure lithium manganese oxide ($LiMn_2$$O_4$) for Li ion secondary battery. Using precipitation-evaporation method, $LiMn_2$$O_4$ cathode materials suitable for Li ion secondary batteries can be synthesized. Single spinel phase $LiMn_2$$O_4$ powder was synthesized at lower temperature compared to that of prepared by solid-state method. $LiMn_2$$O_4$ powder prepared by precipitation-evaporation method showed uniform, small size and well defined crystallinity particles. Li ion secondary battery using $LiMn_2$$O_4$ as cathode materials prepared by precipitation-evaporation method and calcined at $800^{\circ}C$ showed discharge capacity of 106.03mAh/g and discharge capacity of 95.60mAh/g at 10th cycle. Although Li ion secondary battery showed somewhat smaller initial capacity but good cyclic ability. It is suggested that electro-chemical properties can be improved by controlling particle characteristics by particle morphology modification during calcination and optimizing Li ion secondary battery assembly conditions.

Fabrication of LiNiO2 using NiSO4 Recovered from NCM (Li[Ni,Co,Mn]O2) Secondary Battery Scraps and Its Electrochemical Properties (NCM(Li[Ni,Co,Mn]O2)계 폐 리튬이차전지로부터 NiSO4의 회수와 이를 이용한 LiNiO2 제조 및 전기화학적 특성)

  • Kwag, Yong-Gyu;Kim, Mi-So;Kim, Yoo-Young;Choi, Im-Sic;Park, Dong-Kyu;Ahn, In-Sup;Cho, Kwon-Koo
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.286-293
    • /
    • 2014
  • The electrochemical properties of cells assembled with the $LiNiO_2$ (LNO) recycled from cathode materials of waste lithium secondary batteries ($Li[Ni,Co,Mn]O_2$), were evaluated in this study. The leaching, neutralization and solvent extraction process were applied to produce high-purity $NiSO_4$ solution from waste lithium secondary batteries. High-purity NiO powder was then fabricated by the heat-treatment and mixing of the $NiSO_4$ solution and $H_2C_2O_4$. Finally, $LiNiO_2$ as a cathode material for lithium ion secondary batteries was synthesized by heat treatment and mixing of the NiO and $Li_2CO_3$ powders. We assembled the cells using the $LiNiO_2$ powders and evaluated the electrochemical properties. Subsequently, we evaluated the recycling possibility of the cathode materials for waste lithium secondary battery using the processes applied in this work.

Mixed Electrolytes of Organic Solvents and Ionic Liquid for Rechargeable Lithium-Ion Batteries

  • Choi, Ji-Ae;Shim, Eun-Gi;Scrosati, Bruno;Kim, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3190-3194
    • /
    • 2010
  • Mixed electrolytes formed by the combination of 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (BMP-TFSI) ionic liquid and standard liquid electrolyte are prepared and characterized. Linear sweep voltammetry measurements demonstrate that these mixed systems exhibit a wide electrochemical stability window, allowing them to be suitable electrolyte for carbonaceous anode-based lithium-ion batteries. Lithium-ion cells composed of graphite anode and $LiCoO_2$ cathode are assembled using the mixed electrolytes, and their cycling performances are evaluated. The cell containing proper content of BMP-TFSI shows good cycling performance comparable to that of a cell assembled with organic electrolyte. The presence of BMP-TFSI in the mixed electrolyte contributes to the reduction of the flammability of electrolyte solution and the improvement of the thermal stability of charged $Li_{1-x}CoO_2$ in the electrolyte solution.

Preparation of LiCoO$_2$from Used Lithium Ion Battery by Hydrometallurgical Processes

  • Lee, Churl-Kyoung;Rhee, Kang-In;Yang, Dong-Hyo;Yu, Hyo-Shin
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.240-244
    • /
    • 2001
  • Recycling process involving mechanical, thermal, hydrometallurgical, and sol-gel step has been applied to recover cobalt and lithium from spent lithium ion batteries and to synthesize LiCoO$_2$from leach liquor as cathodic active materials. Electrode materials containing lithium and cobalt could be concentrated with 2-step thermal and mechanical treatment. Leaching behaviors of the lithium and cobalt in nitric acid media was investigated in terms of reaction variables. Hydrogen peroxide in 1 M HNO$_3$solution turned out to be an effective reducing agent by enhancing the leaching efficiency. O f many possible processes to produce LiCoO$_2$, the amorphous citrate precursor process (ACP) has been applied to synthesize powders with a large specific surface area and an exact stoichiometry. After leaching used LiCoO$_2$with nitric acid, the molar ratio of Li/Co in the leach liquor was adjusted at 1.1 by adding a fresh LiNO$_3$solution. Then, 1 M citric acid solution at a 100% stoichiometry was also added to prepare a gelatinous precursor. When the precursor was calcined at 95$0^{\circ}C$ for 24 hr, purely crystalline LiCoO$_2$was successfully obtained. The particle size and specific surface area of the resulting crystalline powders were 20 пm and 30 $\textrm{cm}^2$/g, respectively The LiCoO$_2$powder was proved to have good characteristics as cathode active materials in charge/discharge capacity and cyclic performance.

  • PDF

Numerical Study on Thermal Runaway by Temperatures and Appearance Sizes in NCM622 and LFP Cylindrical Lithium-ion Batteries (NCM622과 LFP 리튬이온 배터리의 주변 온도와 셀 크기에 따른 열폭주 현상에 대한 수치해석적 연구)

  • Kim, Woo-Young;Kim, Nam-Jin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.4
    • /
    • pp.46-58
    • /
    • 2021
  • As accidents with thermal runaway (TR) of lithium-ion batteries occur sporadically, the safety concern is the main obstacle that hinders the large-scale applications of lithium ion batteries. In most accidents, the TR of a single cell occurred first, and then dissipated the heat to the surroundings and triggered the TR of adjacent cells, resulting in TR propagation. Therefore, it is important to understand the mechanism of TR propagation and determine the key parameters during TR propagation in a battery pack. In this study, we performed a numerical analysis on the thermal runaway phenomenon by cathode active materials and appearance sizes in cylindrical lithium-ion batteries using a two-dimensional analysis model. The model results showed that the TR propagation of 21700 type cells (21 mm diameter, 70 mm height) occurs more rapidly than 46800 type cells (46 mm diameter, 80 mm height) and the LFP cell has higher thermal safety than the NCM cell. Especially, we found that the effect of the separator on the occurrence of TR is negligible.

Effect of Sulfate-based Cathode-Electrolyte Interphases on Electrochemical Performance of Ni-rich Cathode Material

  • Chae, Bum-Jin;Song, Hye Ji;Mun, Junyoung;Yim, Taeeun
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.361-367
    • /
    • 2020
  • Recently, layered nickel-rich cathode materials (NCM) have attracted considerable attention as advanced alternative cathode materials for use in lithium-ion batteries (LIBs). However, their inferior surface stability that gives rise to rapid fading of cycling performance is a significant drawback. This paper proposes a simple and convenient coating method that improves the surface stability of NCM using sulfate-based solvents that create artificial cathode-electrolyte interphases (CEI) on the NCM surface. SOx-based artificial CEI layer is successfully coated on the surface of the NCM through a wet-coating process that uses dimethyl sulfone (DMS) and dimethyl sulfoxide (DMSO) as liquid precursors. It is found that the SOx-based artificial CEI layer is well developed on the surface of NCM with a thickness of a few nanometers, and it does not degrade the layered structure of NCM. In cycling performance tests, cells with DMS- or DMSO-modified NCM811 cathodes exhibited improved specific capacity retention at room temperature as well as at high temperature (DMS-NCM811: 99.4%, DMSO-NCM811: 88.6%, and NCM811: 78.4%), as the SOx-based artificial CEI layer effectively suppresses undesired surface reactions such as electrolyte decomposition.

Electrochemistry Characteristics of $Li_4Ti_5O_{12}$ Anode Electrode for Li-ion Battery (리튬전지용 $Li_4Ti_5O_{12}$ 음극전극의 전기화학적 특성)

  • Oh, Mi-Hyun;Kim, Han-Joo;Kim, Young-Jae;Son, Won-Keun;Lim, Kee-Joe;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.340-341
    • /
    • 2005
  • Lithium titanium oxide as anode material for energy storage prepared by novel synthesis method. $Li_4Ti_5O_{12}$ based spinel-framework structures are of great interest material for lithium-ion batteries. We describe here $Li_4Ti_5O_{12}$ a zero-strain insertion material was prepared by novel sol-gel method and by high energy ball milling (HEBM) of precursor to from nanocrystalline phases. According to the X-ray diffraction and scanning electron microscopy analysis, uniformly distributed $Li_4Ti_5O_{12}$ particles with grain sizes of 100nm were synthesized. Lithium cells, consisting of $Li_4Ti_5O_{12}$ anode and lithium cathode showed the 173 mAh/g in the range of 1.0 $\sim$ 3.0 V. Furthermore, the crystalline structure of $Li_4Ti_5O_{12}$ didn't transfer during the lithium intercalation and deintercalation process.

  • PDF

Design LixV2O5 Cathode Structure for Effective Lithium Ion Intercalation (리튬 이차전지 양극재 LixV2O5의 효율적인 방전을 위한 구조 설계)

  • Park, Jun Kyu;Kim, Soo Il;Kim, Dongchoul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.7
    • /
    • pp.589-594
    • /
    • 2014
  • Recently, higher capacity and energy density of lithium ion batteries are increasingly demanded for enhancing their performance in view of the rise in the commercial distribution of electric and hybrid vehicles. Computational analysis of a porous structure of vanadium pentoxide cathode was performed, employing a phase field model. The incipient model was designed as a spherical structure with cylindrical-shaped pores. Modifying the diameters and lengths of the pore cylinder and the number of pores, we considered different conditions for the porous vanadium pentoxide cathodes for analyzing their effect on the amount of lithium ion intercalated to them. Subsequently, we optimized the porous structure to contain the largest amount of intercalated lithium ion during discharge.