DOI QR코드

DOI QR Code

Numerical Study on Thermal Runaway by Temperatures and Appearance Sizes in NCM622 and LFP Cylindrical Lithium-ion Batteries

NCM622과 LFP 리튬이온 배터리의 주변 온도와 셀 크기에 따른 열폭주 현상에 대한 수치해석적 연구

  • Kim, Woo-Young (Department of Mechanical Engineering, Jeju National University) ;
  • Kim, Nam-Jin (Department of Mechanical Engineering, Jeju National University)
  • 김우영 (제주대학교 기계공학과) ;
  • 김남진 (제주대학교 기계공학과)
  • Received : 2021.10.24
  • Accepted : 2021.11.24
  • Published : 2021.12.01

Abstract

As accidents with thermal runaway (TR) of lithium-ion batteries occur sporadically, the safety concern is the main obstacle that hinders the large-scale applications of lithium ion batteries. In most accidents, the TR of a single cell occurred first, and then dissipated the heat to the surroundings and triggered the TR of adjacent cells, resulting in TR propagation. Therefore, it is important to understand the mechanism of TR propagation and determine the key parameters during TR propagation in a battery pack. In this study, we performed a numerical analysis on the thermal runaway phenomenon by cathode active materials and appearance sizes in cylindrical lithium-ion batteries using a two-dimensional analysis model. The model results showed that the TR propagation of 21700 type cells (21 mm diameter, 70 mm height) occurs more rapidly than 46800 type cells (46 mm diameter, 80 mm height) and the LFP cell has higher thermal safety than the NCM cell. Especially, we found that the effect of the separator on the occurrence of TR is negligible.

Keywords

References

  1. C. Jung, 2008, Electrochemical absorption effect of BF4 anion salt on SEI layer formation, Solid State Ionics, Vol. 179, pp. 1717-1720. https://doi.org/10.1016/j.ssi.2008.03.026
  2. Li, H., Duan, Q., Zhao, C., Huang, Z., and Wang, Q., 2019a. Experimental investigation on the thermal runaway and its propagation in the large format battery module with Li(Ni1/3Co1/3Mn1/3)O2 as cathode. J. of Hazardous Materials, No. 375, pp. 241-254.
  3. Al Hallaj, S., Maleki, H., Hong, J. S., and Selman, J. R., 1999, Thermal modeling and design considerations of lithium-ion batteries, J. of Power Sources. Vol. 83, No. 1-2, pp. 1-8. https://doi.org/10.1016/S0378-7753(99)00178-0
  4. Botte G. G., Johnson, B. A., and White, R. E., 1999, Influence of some design variables on the thermal behavior of a lithium-ion cell, J. of the Electrochemical Society, Vol. 146, No. 3, pp. 914-923. https://doi.org/10.1149/1.1391700
  5. Pesaran, A., Bharathan, D., Kim, G. H., Vlahinos, A., and Duong, T., 2005, Improving battery design with electrothermal modeling, Proceedings of the 21st Electric Vehicle Symposium, Monte Carlo, Monaco.
  6. Bharathan, D., Pesaran, A., Kim, G. H., and Vlahinos, A., 2005, Electro-Thermal Modeling to Improve Battery Design, Proceedings of the IEEE Vehicle Power and Propulsion Conference IEEE, Chicago, IL, USA.
  7. Kim, G. H., Pesaran, A., and Spotnitz, R., 2007, A three-dimensional thermal abuse model for lithium-ion cells, Journal of Power Sources, Vol. 170, pp. 476-489. https://doi.org/10.1016/j.jpowsour.2007.04.018
  8. Feng, X., He, X., Ouyang, M., Lu, L., Wu, P., Kulp, C., Prasser, S., 2015b. Thermal runaway propagation model for designing a safer battery pack with 25 LiNixCoyMnzO2 large format lithium ion battery. Appl. Energy, Vol. 154, pp. 74-91. https://doi.org/10.1016/j.apenergy.2015.04.118
  9. Yamauchi, T., Mizushima, K., Satoh, Y., and Yamada, S., 2004, Development of a simulator for both property and safety of a lithium secondary battery, J. of Power Sources, Vol. 136, pp. 99-107. https://doi.org/10.1016/j.jpowsour.2004.05.011
  10. Spotnitz, R. M., Weaver, J., Yeduvaka, G., Doughty, D. H., and Roth, E. P., 2007, Simulation of abuse tolerance of lithium-ion battery packs, J. of Power Sources, Vol. 163, pp. 1080-1086. https://doi.org/10.1016/j.jpowsour.2006.10.013
  11. Hatchard, T. D., MacNeil, D. D., Stevens, D. A., Christensen, L., and Dahn, J. R., 2000, Importance of Heat Transfer by Radiation in LiIon Batteries during Thermal Abuse, Electrochem. Solid-State Lett. Vol. 3, pp. 305-308.
  12. Hatchard, T. D., MacNeil, D. D., Basu, A., and Dahn, J. R., 2001, Thermal model of cylindrical and prismatic lithium-ion cells, J. of The Electrochemical Society, Vol. 148, No. 7, pp. A755-A761.
  13. Wang, H., Dua, Z., Ruib, X., Wang, S., Jin, C., He, L., Zhang, F., Wang, Q., and Feng, X, 2020, A comparative analysis on thermal runaway behavior of Li (NixCoyMnz) O2 battery with different nickel contents at cell and module level, J. of Hazardous Materials, Vol. 393, pp. 122-361.
  14. Hong, S. H., Jang, W. B., Park, M. W. and Oh, K. Y., 2020, An Experimental Study on the Fire and Thermal Runaway Chrateristics according to Shape type of Lithium ion Battery, Korean J. hazardous Materials, Vol. 8, No. 2, pp. 55-60. https://doi.org/10.31333/kihm.2020.8.2.55
  15. Na, S. M., Park, H. G., Kim, S. W., Cho, H. H. and Park, G. J. 2020, Research Trends of Cathode Materials for Next Generation Lithium Ion Battery, J. of Industrial and Engineering Chemistry, Vol. 23, No. 1, pp. 3-17.
  16. Peng, P. and Jiang, F., 2016, Thermal safety of lithium-ion batteries with various cathode materials: A numerical study, Int. J. Heat Mass Transfer, Vol. 103, pp. 1008-1016 https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.088
  17. Churchill, S. W. and Chu, H. H. S., 1975, Correlating equations for laminar and turbulent free convection from a vertical plate, I. J. of Heat Mass Transfer, Vol. 18, No. 11, pp. 1323-1329. https://doi.org/10.1016/0017-9310(75)90243-4
  18. Feng, X., Zheng, S., Ren, D., He, X., Wang, L., Cui, H., Liu, X., Jin, C., Zhang, F., Xu, C., Hsu, H., Gao, S., Chen, T., Li, Y., Wang, T., Wang, H., Li, M., and Ouyang, M., 2019, Investigating the thermal runaway mechanisms of lithium-ion batteriesbased on thermal analysis database, J. of Applied Energy, Vol. 246, pp. 53-64. https://doi.org/10.1016/j.apenergy.2019.04.009
  19. Feng, X., He, X., Ouyang, M., Lu, L., Wu, L., Kulp, C., and Prasser, S., 2015, Thermal runaway propagation model for designing a safer battery pack with 25 Ah LiNixCoyMnzO2 large format lithium ion battery, Appl. Energy, Vol. 154, pp. 74-91. https://doi.org/10.1016/j.apenergy.2015.04.118
  20. Feng, X., He, X., Ouyang, M., Wang, L., Lu, L., Ren, D., and Santhanagopalan, S., 2018, A Coupled Electrochemical-Thermal Failure Model for Predicting the Thermal Runaway Behavior of Lithium-Ion Batteries, J. the Electrochemical Society, Vol. 165, pp. 3748-3765.
  21. Gang, M. B. and Kim, N. J., 2021, Numerical analysis on thermal runaway by cathode active materials inlithium-ion batteries, Transactions of the KSGEE, Vol. 17, No. 2, pp. 1-10
  22. Hwang, E. H., Choi, J. H., and Choi, D. M., 2018, A Study on the Effective Methods of Securing the Golden Time of Fire Engine Move Out, J. Korean Soc. Hazard Mitig., Vol. 18, pp. 119-126. https://doi.org/10.9798/KOSHAM.2018.18.5.119