• 제목/요약/키워드: Cathode

검색결과 2,940건 처리시간 0.041초

중온형 고체산화물 연료전지를 위한 YSZ 전해질에서의 고성능 공기극 연구 (Study on high performance cathode on YSZ electrolyte for intermediate-temperature solid oxide fuel cells(IT-SOFC))

  • 이창보;배중면
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.368-371
    • /
    • 2006
  • [ $La_{0.8}Sr_{0.2}Co_{1-x}Mn_xO_3$ ] cathode as a high performance cathode on YSZ electrolyte was studied by analyzing impedance spectra. It was shown that cathode property of $La_{0.8}Sr_{0.2}Co_{1-x}Mn_xO_3$ is bet ter than that of$La_{0.8}Sr_{0.2}CoO_3$. At $700^{\circ}C$ in air environment, $La_{0.8}Sr_{0.2}Co_{0.4}Mn_{0.6}O_3$ cathode on CGO- layered YSZ electrolyte showed very low area specific resistance of $0.14{\Omega}cm^2$, which is low enough for intermediate-temperature sol id oxide fuel cells. This is because material properties of ionic conductivity and thermal expansion compatibility with electrolyte were optimized. Judging from activation energy and oxygen part i al pressure dependance of cathode property, it was noted that oxygen surface exchange kinetics is dominantly influential on cathode property in higher temperature region than $700^{\circ}C$ and oxygen self-diffusion in cathode material is more influential in lower temperature region.

  • PDF

Al 음극 두께 변화에 따른 양면 발광 OLED의 발광 특성 (Emission Characteristics of Dual-Side Emission OLED with Al Cathode Thickness Variation)

  • 김지현;주성후
    • 한국표면공학회지
    • /
    • 제48권4호
    • /
    • pp.174-178
    • /
    • 2015
  • We studied emission characteristics for blue fluorescent dual-side emission OLED with Al cathode thickness variation. In the bottom emission OLED of Al cathode with 10, 15, 20, 25, 30, and 150 nm thickness, maximum luminance showed 36.1, 8,130, 9,300, 12,000, 13,000, and $12,890cd/m^2$, and maximum current efficiency showed 2, 8.8, 10, 10.5, 10.8, and 11.4 cd/A, respectively. The emission characteristics of the bottom emission seemed to be improved according to decrease of resistance as the thickness of Al cathode increase. In the top emission OLED of Al cathode with 10, 15, 20, 25, and 30 nm thickness, maximum luminance showed 4.3, 351, 131, 88.6, and $33.2cd/m^2$, and maximum current efficiency showed 0.23, 0.38, 0.21, 0.16, and 0.09 cd/A, respectively. It yielded the highest maximum luminance and maximum current efficiency in Al cathode thickness 15 nm. It showed a tendency to decrease as the thickness of Al cathode increase. The reason for this is due to decrease of transmittance with increasing of Al cathode thickness. The electroluminescent spectra of bottom and top emission OLED were not change.

Triphenyl phosphate as an Efficient Electrolyte Additive for Ni-rich NCM Cathode Materials

  • Jung, Kwangeun;Oh, Si Hyoung;Yim, Taeeun
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권1호
    • /
    • pp.67-73
    • /
    • 2021
  • Nickel-rich lithium nickel-cobalt-manganese oxides (NCM) are viewed as promising cathode materials for lithium-ion batteries (LIBs); however, their poor cycling performance at high temperature is a critical hurdle preventing expansion of their applications. We propose the use of a functional electrolyte additive, triphenyl phosphate (TPPa), which can form an effective cathode-electrolyte interphase (CEI) layer on the surface of Ni-rich NCM cathode material by electrochemical reactions. Linear sweep voltammetry confirms that the TPPa additive is electrochemically oxidized at around 4.83 V (vs. Li/Li+) and it participates in the formation of a CEI layer on the surface of NCM811 cathode material. During high temperature cycling, TPPa greatly improves the cycling performance of NCM811 cathode material, as a cell cycled with TPPa-containing electrolyte exhibits a retention (133.7 mA h g-1) of 63.5%, while a cell cycled with standard electrolyte shows poor cycling retention (51.3%, 108.3 mA h g-1). Further systematic analyses on recovered NCM811 cathodes demonstrate the effectiveness of the TPPa-based CEI layer in the cell, as electrolyte decomposition is suppressed in the cell cycled with TPPa-containing electrolyte. This confirms that TPPa is effective at increasing the surface stability of NCM811 cathode material because the TPPa-initiated POx-based CEI layer prevents electrolyte decomposition in the cell even at high temperatures.

IEC 장치에서 이중 그리드 음극의 영향 (Effect of Double Grid Cathode in IEC Device)

  • 주흥진;김봉석;황휘동;박정호;최승길;고광철
    • 한국전기전자재료학회논문지
    • /
    • 제23권9호
    • /
    • pp.724-729
    • /
    • 2010
  • We have proposed a new configuration on the cathode structure to improve a neutron yield without the application of external ion sources in an inertial electrostatic confinement (IEC) device. A neutron yield in the IEC device is closely related to the potential well structure generated inside the cathode and is proportional to the ion current. Therefore, the application of a double grid cathode structure to the IEC device is expected to produce a higher ion current and neutron yield than at a single grid cathode due to a high electric field strength generated around the cathode. These possibilities were verified as compared with the ion current calculated from both shape of the single and double grid cathode. Additionally from the results of ion's lives and trajectories examined at various outer cathode voltages and grid cathode configurations by using particle simulations, the validity of the double grid cathode was confirmed.

Cathode material에 따른 organic photovoltaics 안정성의 영향 (The influence of cathode material on the stability of organic photovoltaics)

  • 박준기;김영훈;한정인
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1266-1267
    • /
    • 2011
  • We studied the influence of cathode material on the stability of organic phtovoltaics (OPVs). OPVs with LiF/Al and Ag/Ca/Ag cathode were fabricated and the stability were evaluated. The sample with LiF/Al cathode showed efficiency degradation from 2.42% to 2.04% during 50 days. On the other hand, the sample with Ag/Ca/Ag cathode showed more steeper efficiency degradation from 2.38% to 0.80% during 50 days. The different of degradation can be attributed to a larger increase of series resistance ($R_s$) in Ag/Ca/Ag cathode sample.

  • PDF

PM OLED Fabrication with New Method of Metal Cathode Deposition Using Shadow Mask

  • Lee, Ho-Chul;Kang, Seong-Jong;Yi, Jung-Yoon;Kim, Ho-Eoun;Kwon, Oh-June;Hwang, Jo-Il;Kim, Jeong-Moon;Roh, Byeong-Gyu;Kim, Woo-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.987-989
    • /
    • 2006
  • 1.52" $130(RGB){\times}130$ full color PM OLED device with $70\;{\mu}m{\times}210\;{\mu}m$ of sub-pixel pitch was fabricated using shadow mask method for metal cathode deposition. Instead of conventional patterning process to form cathode separator via photolithography, regularly patterned shadow mask was applied to deposit metal cathode in this OLED display. Metal cathode was patterned via 2-step evaporation using shadow mask with shape of rectangular stripe and its alignment margin is $2.5\;{\mu}m$. Technical advantages of this method include reduction of process time according to skipping over photolithographic process for cathode separator and minimizing pixel shrinkage caused by PR cathode separator as well as improving lifetime of OLED device.

  • PDF

Alq$_3$-based organic light-emitting devices with Al/fluoride cathode; Performance enhancement and interface electronic structures

  • Park, Y.;Lee, J.;Kim, D.Y.;Chu, H.Y.;Lee, H.;Do, L.M.;Zyung, T.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.105-107
    • /
    • 2002
  • The device characteristics and the interface electronic structures of organic light-emitting devices based on tris-(8-hydroxyquinoline)aluminum were investigated with $Al/CaF_2$, Al/LiF, and Al-only cathodes. Similar to the Al/LiF cathode, the $Al/CaF_2$ cathode greatly improved the performance of the device over Al-only cathode. However, a photoelectron spectroscopy study revealed that despite the performance improvement, the evolution of the new peaks during $Al/CaF_2$ cathode formation closely resembled those of the Al-only cathode rather than the Al/LiF cathode.

  • PDF

플라즈마 증착 반응기에서 유체흐름과 상온에서 증착된 티타늄 산화막 특성 (Fluid Flow in Plasma Deposition Reactor and Characteristics of Titanium Oxide Films Deposited at Room Temperature)

  • 정일현
    • 공업화학
    • /
    • 제18권5호
    • /
    • pp.438-443
    • /
    • 2007
  • 본 연구에서는 티타늄 산화막을 상온에서 HCP (hollow cathode plasma) 반응기에 의하여 증착하였다. HCP 반응기에 대한 시뮬레이션 결과, 전극에서의 열 발생에 관계없이 기판 표면에서의 온도분포는 일정하였다. 그리고 전극과의 거리가 증가하면서 기판 표면에서의 유체는 일정한 것으로 나타났으며, 표면 조도는 거리에 따라 감소하였다. 출력이 증가할수록 산소의 조성은 증가하는 것으로 나타났으며, 출력이 240 watt와 반응 거리가 3 cm에서 Ti와 O의 비율이 1 : 2에 가깝게 결합이 이루어졌다.

Surface-modified Li[Ni0.8Co0.15Al0.05]O2 Cathode Fabricated using Polyvinylidene Fluoride as a Novel Coating

  • Lee, Jun Won;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권4호
    • /
    • pp.263-268
    • /
    • 2016
  • This study describes the effect of coating the $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ cathode surface with a homogeneous carbon layer produced by carbonization of polyvinylidene fluoride (PVDF) as a novel organic source. The phase integrity of the above cathode was not affected by the carbon coating, whereas its rate capability and cycling performance were enhanced. Similarly, the cathode thermal stability was also improved after coating, which additionally protected the cathode surface against the reactive electrolyte containing hydrofluoric acid (HF). The results show that coating the $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ cathode with carbon using the PVDF precursor is an effective approach to enhance its electrochemical properties.

대면적 스퍼터링 박막 제작을 위한 캐소드 설계 및 제작 (Design and Preparation of Cathode for Large Sputtering Thin Film)

  • 김유진;김상모;김경환
    • 반도체디스플레이기술학회지
    • /
    • 제18권2호
    • /
    • pp.53-57
    • /
    • 2019
  • In this study, we prepared sputtering cathode for large sputtering thin film in the facing targets sputtering(FTS) system. Before fabrication of cathode equipment, we investigated optimal magnetic flux in the sputtering cathode by using magnetic field stimulation(Comsol). According to the result of magnetic field stimulation, we manufactured the cathode. After we mounted laboratory-designed cathode on FTS system, the discharge properties were observed in vacuum condition. In addition, ITO films were deposited on glass substrate and their electrical and optical properties were investigated by various measurements (four-point probe, UV-VIS spectrometer, field emission scanning electron microscopy(FE-SEM), Hall-effect measurement).