• Title/Summary/Keyword: Cathepsin-K

Search Result 171, Processing Time 0.022 seconds

Effect of Atractylodis Rhizoma Alba on Osteoclast Formation (백출의 파골세포 분화에 미치는 영향)

  • Park, Sung-Tae;Lee, Myeung-Su;Jeon, Byung-Hun;Park, Kie-In;Oh, Jae-Min
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.1
    • /
    • pp.109-114
    • /
    • 2011
  • Atractylodis Rhizoma Alba is commonly used herbal medicine and it has been known that has immuno-regualtory effects and anti-cancer effects. The inhibition of osteoclastogenesis is essential for the prevention and treatment of osteoporosis. The aim of this study was to evaluate the effects of Atractylodis Rhizoma Alba on osteoclast differentiation in vitro and on resorbing activity of osteoclast. Osteoclast formation was evaluated in bone marrow cells (BMC) in the presence or absence of Atractylodis Rhizoma Alba. The expression of c-fos, tartrate-resistant acid phosphatase (TRAP), OSCAR, DC-STAMP, cathepsin K, MafB and NFATc1 mRNA in osteoclast precursor were assessed by RT-PCR. The levels of TNF receptor-associated factor-6 (TRAF-6), c-fos and NFATc1 protein were assessed by Western blot analysis. Also the correlation with MAPKs and NF-${\kappa}B$ pathways were measured by using Western blot analysis. With bone resorption study, I tried to evaluate the inhibitory effects of Atractylodis Rhizoma Alba on mature osteoclast function. Atractylodis Rhizoma Alba inhibited the RANKL induced osteoclastic differentiation from bone marrow macrophage in a dose dependant manner without cellular toxicity. Gene expression of c-fos and NFATc1 was significantly down regulated with Atractylodis Rhizoma Alba treatment. Atractylodis Rhizoma Alba markedly inhibited the RANKL-induced osteoclastogenesis through suppression of nuclear factor kappa b (NF-${\kappa}B$) pathway, down stream pathway of p38, ERK and JNK pathway. Taken together, I concluded that Atractylodis Rhizoma Alba have beneficial effect on osteoporosis by inhibition of osteoclast differentiation and by inhibition of functioning osteoclast. Thus I expect that Atractylodis Rhizoma Alba could be a treatment option for osteoporosis.

Poncirin Inhibits Osteoclast Differentiation and Bone Loss through Down-Regulation of NFATc1 In Vitro and In Vivo

  • Chun, Kwang-Hoon;Jin, Hyun Chul;Kang, Ki Sung;Chang, Tong-Shin;Hwang, Gwi Seo
    • Biomolecules & Therapeutics
    • /
    • v.28 no.4
    • /
    • pp.337-343
    • /
    • 2020
  • Activation of osteoclast and inactivation of osteoblast result in loss of bone mass with bone resorption, leading to the pathological progression of osteoporosis. The receptor activator of NF-κB ligand (RANKL) is a member of the TNF superfamily, and is a key mediator of osteoclast differentiation. A flavanone glycoside isolated from the fruit of Poncirus trifoliata, poncirin has anti-allergic, hypocholesterolemic, anti-inflammatory and anti-platelet activities. The present study investigates the effect of poncirin on osteoclast differentiation of RANKL-stimulated RAW264.7 cells. We observed reduced formation of RANKL-stimulated TRAP-positive multinucleated cells (a morphological feature of osteoclasts) after poncirin exposure. Real-time qPCR analysis showed suppression of the RANKL-mediated induction of key osteoclastogenic molecules such as NFATc1, TRAP, c-Fos, MMP9 and cathepsin K after poncirin treatment. Poncirin also inhibited the RANKL-mediated activation of NF-κB and, notably, JNK, without changes in ERK and p38 expression in RAW264.7 cells. Furthermore, we assessed the in vivo efficacy of poncirin in the lipopolysaccharide (LPS)-induced bone erosion model. Evaluating the micro-CT of femurs revealed that bone erosion in poncirin treated mice was markedly attenuated. Our results indicate that poncirin exerts anti-osteoclastic effects in vitro and in vivo by suppressing osteoclast differentiation. We believe that poncirin is a promising candidate for inflammatory bone loss therapeutics.

Inhibitory Effects of Panduratin A on Periodontitis-Induced Inflammation and Osteoclastogenesis through Inhibition of MAPK Pathways In Vitro

  • Kim, Haebom;Kim, Mi-Bo;Kim, Changhee;Hwang, Jae-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.190-198
    • /
    • 2018
  • Periodontitis is an inflammatory disease caused by microbial lipopolysaccharide (LPS), destroying gingival tissues and alveolar bone in the periodontium. In the present study, we evaluated the anti-inflammatory and anti-osteoclastic effects of panduratin A, a chalcone compound isolated from Boesenbergia pandurata, in human gingival fibroblast-1 (HGF-1) and RAW 264.7 cells. Treatment of panduratin A to LPS-stimulated HGF-1 significantly reduced the expression of interleukin-$1{\beta}$ and nuclear factor-kappa B (NF-${\kappa}B$), subsequently leading to the inhibition of matrix metalloproteinase-2 (MMP-2) and MMP-8 compared with that in the LPS control ($^{**}p$ < 0.01). These anti-inflammatory responses were mediated by suppressing the mitogen-activated protein kinase (MAPK) signaling and activator protein-1 complex formation pathways. Moreover, receptor activator of NF-${\kappa}B$ ligand (RANKL)-stimulated RAW 264.7 cells treated with panduratin A showed significant inhibition of osteoclastic transcription factors such as nuclear factor of activated T-cells c1 and c-Fos as well as osteoclastic enzymes such as tartrate-resistant acid phosphatase and cathepsin K compared with those in the RANKL control ($^{**}p$ < 0.01). Similar to HGF-1, panduratin A suppressed osteoclastogenesis by controlling MAPK signaling pathways. Taken together, these results suggest that panduratin A could be a potential candidate for development as a natural anti-periodontitis agent.

Suppression of Inflammation, Osteoclastogenesis and Bone Loss by PZRAS Extract

  • Li, Liang;Park, Young-Ran;Shrestha, Saroj Kumar;Cho, Hyoung-Kwon;Soh, Yunjo
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.10
    • /
    • pp.1543-1551
    • /
    • 2020
  • Panax ginseng has a wide range of activities including a neuroprotective effect, skin protective effects, enhanced DNA repairing, anti-diabetic activity, and protective effects against vascular inflammation. In the present study, we sought to discover the inhibitory effects of a mixture of natural products containing Panax ginseng, Ziziphus jujube, Rubi fructus, Artemisiae asiaticae and Scutellaria baicalensis (PZRAS) on osteoclastogenesis and bone remodeling, as neither the effects of a mixture containing Panax ginseng extract, nor its molecular mechanism on bone inflammation, have been clarified yet. PZRAS upregulated the levels of catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GSH-R) and glutathione peroxidase (GSH-Px) and reduced malondialdehyde (MDA) in LPS-treated RAW264.7 cells. Moreover, treatment with PZRAS decreased the production of IL-1β and TNF-α. PZRAS also inhibited osteoclast differentiation through inhibiting osteoclastspecific genes like MMP-2, 9, cathepsin K, and TRAP in RANKL-treated RAW264.7 cells. Additionally, PZRAS has inhibitory functions on the RANKL-stimulated activation of ERK and JNK, which lead to a decrease in the expression of NFATc1 and c-Fos. In an in vivo study, bone resorption induced by LPS was recovered by treatment with PZRAS in bone volume per tissue volume (BV/TV) compared to control. Furthermore, the ratio of eroded bone surface of femurs was significantly increased in LPS-treated mice compared to vehicle group, but this ratio was significantly reversed in PZRAS-treated mice. These results suggest that PZRAS could prevent or treat disorders with abnormal bone loss.

Inhibitory Effects of Rhizoma Arisaematis on Osteoclast Differentiation and Bone Resorption (파골세포의 분화와 뼈 흡수에 천남성의 억제 효과)

  • Lee, Myeung-Su;Lee, Chang-Hoon;Park, Kie-In;Kim, Ha-Young
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.1
    • /
    • pp.65-70
    • /
    • 2011
  • Osteoclasts play a critical role in bone-related diseases such as osteoporosis and rheumatoid arthritis by resorbing the bone. Recently, natural products from plants have been extensively studied as therapeutic drugs to treat and prevent various diseases. Here, we examined the effects of rhizoma arisaematis on ostoclast differentiation and bone resorption. We showed that rhizoma arisaematis significantly suppressed receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation in bone marrow-derived macrophages (BMMs) in a dose dependent manner but have little or no effect on the cytotoxicity of BMMs and RAW264.7 cells. We found that rhizoma arisaematis iarrow-ed the RANKL-induced c-Fos and nuclear factor of activated T cells (NFAT)c1, which is a master regulator of osteoclast differentiation. Furthermore, rhizoma arisaematis suppressed the mRNA expression of tartrate resistant-acid phosphatase and cathepsin K iaduced by RANKL in BMMs. in y chanistic studies, rhizoma arisaematis considerably iarrow-ed I-${\kappa}B$ degradation, which is a negative regulator of NF-${\kappa}B$, but iaduced the phosphderlation of p-38, ERK, and JNK.MMlso, we found that rhizoma arisaematis significantly iarrow-ed osteoclastic bone resorption. Taken tarether, our results suggest that rhizoma arisaematis suppresses osteoclast differentiation through down-regulatd the mRANKL-induced c-Fos and NFATc1 expression and iarrow-s bone resorption.

The Inactivation of ERK1/2, p38 and NF-kB Is Involved in the Down-Regulation of Osteoclastogenesis and Function by A2B Adenosine Receptor Stimulation

  • Kim, Bo Hyun;Oh, Ju Hee;Lee, Na Kyung
    • Molecules and Cells
    • /
    • v.40 no.10
    • /
    • pp.752-760
    • /
    • 2017
  • A2B adenosine receptor (A2BAR) is known to be the regulator of bone homeostasis, but its regulatory mechanisms in osteoclast formation are less well-defined. Here, we demonstrate the effect of A2BAR stimulation on osteoclast differentiation and activity by RANKL. A2BAR was expressed in bone marrow-derived monocyte/macrophage (BMM) and RANKL increased A2BAR expression during osteoclastogenesis. A2BAR stimulation with its specific agonist BAY 60-6583 was sufficient to inhibit the activation of ERK1/2, p38 MAP kinases and $NF-{\kappa}B$ by RANKL as well as it abrogated cell-cell fusion in the late stage of osteoclast differentiation. Stimulation of A2BAR suppressed the expression of osteoclast marker genes, such as c-Fos, TRAP, Cathepsin-K and NFATc1, induced by RANKL, and transcriptional activity of NFATc1 was also inhibited by stimulation of A2BAR. A2BAR stimulation caused a notable reduction in the expression of Atp6v0d2 and DC-STAMP related to cell-cell fusion of osteoclasts. Especially, a decrease in bone resorption activity through suppression of actin ring formation by A2BAR stimulation was observed. Taken together, these results suggest that A2BAR stimulation inhibits the activation of ERK1/2, p38 and $NF-{\kappa}B$ by RANKL, which suppresses the induction of osteoclast marker genes, thus contributing to the decrease in osteoclast cell-cell fusion and bone resorption activity.

Inhibitory Effects of Boesenbergia pandurata on Age-Related Periodontal Inflammation and Alveolar Bone Loss in Fischer 344 Rats

  • Kim, Haebom;Kim, Changhee;Kim, Do Un;Chung, Hee Chul;Hwang, Jae-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.3
    • /
    • pp.357-366
    • /
    • 2018
  • Periodontitis, an infective disease caused by oral pathogens and the intrinsic aging process, results in the destruction of periodontal tissues and the loss of alveolar bone. This study investigated whether Boesenbergia pandurata extract (BPE) standardized with panduratin A exerted anti-periodontitis effects, using an aging model representative of naturally occurring periodontitis. In aged rats, the oral administration of BPE ($200mg{\cdot}kg^{-1}{\cdot}day^{-1}$) for 8 weeks significantly reduced the mRNA and protein expression of $interleukin-1{\beta}$, nuclear factor-kappa B, matrix metalloproteinase (MMP)-2, and MMP-8 in gingival tissues (p < 0.01). In alveolar bone, histological analysis with staining and micro-computed tomography revealed the attenuation of alveolar bone resorption in the BPE-treated aged group, which led to a significant reduction in the mRNA and protein expression of nuclear factor of activated T-cells c1 (NFATc1), c-Fos, tartrate-resistant acid phosphatase, and cathepsin K (p < 0.01). BPE not only increased the expression of osteoblast differentiation markers, such as alkaline phosphate, and collagen type I (COL1A1), but also increased the ratio of osteoprotegerin to RANKL. Collectively, the results strongly suggested that BPE is a natural resource for the prevention or treatment of periodontal diseases.

Effect of Phosphodiesterase in Regulating the Activity of Lysosomes in the HeLa Cell Line

  • Hong, Eun-Seon;Kim, Bit-Na;Kim, Yang-Hoon;Min, Jiho
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.372-379
    • /
    • 2017
  • The transport of lysosomal enzymes into the lysosomes depends on the phosphorylation of their chains and the binding of the phosphorylated residues to mannose-6-phosphate receptors. The efficiency of separation depends more on the phosphodiesterases (PDEs) than on the activity of the phosphorylation of mannose residues and can be determined in vitro. PDEs play important roles in regulation of the activation of lysosomes. The expression of proteins was confirmed by western blotting. All PDE4 series protein expression was reduced in high concentrations of rolipram. As a result of observing the fluorescence intensity after rolipram treatment, the lysosomal enzyme was activated at low concentrations and suppressed at high concentrations. High concentrations of rolipram recovered the original function. Antimicrobial activity was not shown in either 10 or $100{\mu}M$ concentrations of rolipram in treated HeLa cells in vitro. However, the higher anticancer activity at lower rolipram concentration was shown in lysosomal enzyme treated with $10{\mu}M$ of rolipram. The anticancer activity was confirmed through cathepsin B and D assay. Tranfection allowed examination of the relationship between PDE4 and lysosomal activity in more detail. Protein expression was confirmed to be reduced. Fluorescence intensity showed decreased activity of lysosomes and ROS in cells transfected with the antisense sequences of PDE4 A, B, C, and D. PDE4A showed anticancer activity, whereas lysosome from cells transfected with the antisense sequences of PDE4 B, C, and D had decreased anticancer activity. These results showed the PDE4 A, B, C, and D are conjunctly related with lysosomal activity.

Study on Role of Platelet Aggregation in Cerebrovascular Disease (뇌졸중증(腦卒中症)에 있어서 혈소판(血少板) 응집( 凝集)의 역할에 관한 연구(硏究))

  • Hong, Ki-Whan;Lee, Won-Suk
    • The Korean Journal of Pharmacology
    • /
    • v.18 no.2
    • /
    • pp.15-25
    • /
    • 1982
  • It was undertake to investigate the factors involved in the micro thrombus formation in the plasma from the patients with cerebrovascular disease(CVD) and the in vitro actions of sodium nitroprusside on the platelet aggregate formation. 1) The microthrombus formation in the plasma from CVD was significantly enhanced, in comparison with that from the healthy volunteers. 2) Both lipid peroxide and cathepsin D in the plasma from CVD were higher than those levels from the healthy volunteers. 3) Whereas the platelets from healthy individuals showed less aggregation activity in response to ADP in the second phase those from CVD revealed the enhanced aggregating response to ADP. 4) When the bovine basilar artery, rabbit aorta and human umbilical artery were pretreated with $K^+-free$ PSS, ouabain, 13-hydroperoxylinoleic acid(13-HPLA) and cadmium they markedly enhanced the platelet aggregability respectively. 5) Platelet aggregation induced by $K^+-free$ PSS-treated bovine basilar artery was decreased by sodium nitroprusside in a dose-dependent manner, but not by either hydralazine. 6) Both dibutyryl cyclic AMP and 8-bromo cyclic GMP had the inhibitory action on the platelet aggregation. However, the latter had more prominent action than former. The antiaggregating effect by sodium nitroprusside was antagonized by pretreatment with methylene blue, but not by hemoglobin. These results provide the evidences for the therapeutic use of sodium nitroprusside in the emergency of cerebrovascular disease and in remains the further study of the clinical therapy with it.

  • PDF

Effects of Ulmus davidiana Planch(Ulmaceae) on mineralization, bone morphogenetic protein-2, alkaline phosphatase, type I collagen and collagennase-1 in bone cells (유근피가 골세포의 mineralization, bone morphogenetic protein-2, alkaline phosphatase, type I collagen 및 collagennase-1에 미치는 영향)

  • Byun, You-seok;Yoon, Jong-hwa;Hwang, Min-seob;Kim, Kap-sung;Jo, Hyun-seog
    • Journal of Acupuncture Research
    • /
    • v.22 no.3
    • /
    • pp.13-22
    • /
    • 2005
  • By extracting the sample of Ulmus davidiana Planch(Ulmaceae), which was known to have the protection of damaged organ and the anti-inflammation action, it was experimented whether it is available for the application of treatment of osteoporosis. In the previous experiment, the extracts from Ulmus davidiana Planch(Ulmaceae) were confirmed to inhibit Cathepsin K through treating the cell of long bone, which contains osteoclast. Through this, it is suggested that Ulmus davidiana Planch(Ulmaceae) can play a role of prodrug as an inhibitor of absorbing bone ash in the treatment of osteoporosis. In the present experiment, a research in vitro Ulmus davidiana Planch(Ulmaceae) on the growth and sensibilization of osteoblast in a state that induced osteosis by using the cell tissue of MC3T3-El pre-osteoblastic was conducted. As a result, it could be confirmed that Ulmus davidiana Planch(Ulmaceae) has the strengthening function by enhancing the dosage and the activity of ALP depending on the time. The dosage was observed at the minimum of $50{\mu}g/m{\ell}$ and the maximum of $150{\mu}g/m{\ell}$. The enhancement in bone morphogenetic protein-2 at $100{\mu}g/m{\ell}$ UD could be observed, and it also increased the concentration of ALP mRNA within the cell of MC3T3-El. At $60{\mu}g/m{\ell}$ UD which indicated a little increase in Type I collagen mRNA for a long time of culture. However, it was shown to sharply inhibit the expression of gene in the culture between 15-20 days. These results suggest that Ulmus davidiana Planch(Ulmaceae) has an influence upon bone metabolism through thje sensibilization of osteoblast. Therefore, it could be known that utilized Ulmus davidiana Planch(Ulmaceae) can be positively applied for the general disease of bone metabolism through future studies.

  • PDF